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ABSTRACT 
 

Three-dimensional vectorial diffraction analysis of phase and amplitude gratings in conical mounting is presented based 
on Legendre expansion of electromagnetic fields. In the so-called conical mounting, different fields components are 
coupled and the solution is not separable in terms of independent TE and TM cases.  In contrast to conventional RCWA 
in which the solution is obtained using state variables representation of the coupled wave amplitudes by expanding space 
harmonic amplitudes of the fields in terms of the eigenfunctions and eigenvectors of the coefficient matrix defined by 
rigorous coupled wave equations, here the solution of first order coupled Maxwell’s equations is expanded in terms of 
Legendre polynomials. This approach yields well-behaved algebraic equations for deriving diffraction efficiencies and 
electromagnetic field profiles. It can nicely handle the cases in which conventional methods face the problem of 
numerical instability and inevitable round off errors; also, it yields accurate results to any desired level of accuracy. The 
method is applied to phase and amplitude gratings in conical mountings, comparison to other methods already reported 
in the literature is made, and the presented approach is justified and its usefulness in cases that other methods usually fail 
is demonstrated. This general method applies well even in such cases as thick gratings, non-Bragg incidence, and cases 
in which higher diffracted orders are needed to be retained, or evanescent orders corresponding to real eigenvalues have 
to be included. The efficacy of the proposed method relies on the fact that although Legendre polynomials span a 
complete space, they are not eigensolutions and hence each polynomial basis function bears a weighted projection of all 
eigenfunctions. Thus no modal information is completely missed in the ineluctable truncation process. In deriving the 
formulation, a rigorous approach is followed. 
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1. INTRODUCTION 
 

Analysis of wave propagation in periodic structures, due to its wide range of applications, is faced in various systems 
and design processes appearing in telecommunications, electromagnetism, optics, and acoustics1. Consequently, it is 
essential to have an exact, efficient, and stable way to find reflection and transmission coefficients, diffraction 
efficiencies and field profiles inside and outside of gratings. Different approaches have been reported for grating 
analysis in literature such as rigorous coupled wave1, coupled mode 2, two wave methods 3, and Raman-Nath approach 4. 
Of many methods proposed for analysis of volume diffraction gratings, rigorous coupled wave analysis, or RCWA, is 
the most precise, the most general, and the most widely used method. It has been successfully applied to the analysis of 
two-dimensional and three-dimensional isotropic and anisotropic structures 5-9, as well as multiple grating structures 10-11. 
However, the presence of evanescent orders corresponding to real eigenvalues appearing in the solution of Maxwell’s 
equations usually leads to numerical difficulties in applying RCWA method. This problem is also encountered in 
applying other conventional approaches which are based on modal expansion, where Maxwell’s equations lead to an 
eigenvalue problem. This is due to the fact that evanescent orders result in the simultaneous appearance of extremely 
large and extremely small coefficients in the equations obtained by imposing the boundary conditions and, consequently 
cause numerical overflow and ill-conditioned matrices in calculations. Therefore, a robust method capable of handling 
evanescent orders is mandatory, especially in cases such as multiple grating structures or metallic corrugated gratings, 
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where evanescent or complex diffracted orders cannot always be discarded. Modal expansion methods are also 
vulnerable to numerical instability whenever the ratio of the thickness over the grating periodicity is large, or large 
number of spatial harmonics is retained in the analysis 12. This problem is more critical when analyzing diffraction 
gratings in conical mounting, since the TE and TM components of the electromagnetic field inside the grating are not 
separable and therefore three-dimensional vectorial analysis of Maxwell’s equations is required 6.  
 
Morf has reported a new mathematical method for the special case of lamellar gratings13. That method is based on the 
expansion of the eigenfunctions in terms of a set of polynomial basis functions. However, the polynomial expansion is 
applied only in transverse direction and at each region of constant refractive index separately. Even though the Gibbs 
phenomenon was avoided in following that approach, the method still needed a subtle and delicate handling of 
propagating electromagnetic fields where numerical instabilities similar to those usually encountered in applying 
transfer matrix methods were expected 13,14. 
 
In this paper, similar yet fundamentally different approach is proposed. The electromagnetic field expressions, for each 
component inside the grating, which are the solutions of Maxwell’s equations, are expanded in terms of orthogonal 
Legendre polynomials. Then the solution is examined in a Hilbert space spanned by the polynomials. The method yields 
numerically stable results 12. 
 
This paper is arranged as follows: Legendre polynomial expansion formulation of electromagnetic fields for the analysis 
of gratings in conical mounting is discussed in Section 2. In Section 3, comparison of the polynomial expansion results 
with the three-dimensional vector coupled wave results is presented for some specific test cases. Finally, conclusions are 
made in Section 4. 

2. FORMULATION 

In this section, the electromagnetic field expressions inside the grating are expanded in terms of orthogonal Legendre 
polynomials 15, 16. This novel electromagnetic field expression, in accordance with Floquet theorem, is then substituted 
in Maxwell’s equations; appropriate boundary conditions are applied, and finally the unknown expansion coefficients 
and diffraction efficiencies are found. It should be noticed that expanding the electromagnetic field expressions in an 
orthogonal complete space of polynomials is a nonharmonic expansion 16, i.e. it isn’t a linear combination of intrinsic 
eigenvectors. Nonetheless, it has some advantages over eigenvector expansion and other previously mentioned methods. 
First, the equations become algebraic rather than transcendental; therefore, they can be manipulated easier. Second, this 
approach works properly even in those special cases in which other methods usually fail. There is not any numerical 
instability, not only because the involved matrices are not very sparse, but also because the numbers constituting the 
matrices are neither extremely small nor extremely large, i.e. the condition numbers of the matrices are very good. It 
should be noticed that finding the solution in the Hilbert space spanned by polynomials can be interpreted as the 
projection of harmonic solutions, i.e. modal expansions, on the new bases formed by the polynomials. This means that 
each polynomial contains some information from all the infinite number of the natural modes of the system through their   
projection. This is an important advantage when inevitable truncation of the infinite expansion to finite terms could be 
counterbalanced by keeping the tracks of all eigenmodes in each member of the polynomial set that makes the basis of 
this Hilbert space. 
A grating in conical mounting is shown in Fig. 1. Here, the permittivity is a periodic function: 
 )()( rr εε =+ GΛ ,        (1) 
where GΛ  is the grating periodicity. Inside the grating, the Maxwell’s equations can be easily derived as 6: 

HE ωµj−=×∇ .        (2) 
( )EH zxj ,0εωε=×∇ .        (3) 

In these equations, E and H can be expanded in terms of space harmonics as 6: 
( ) ( ) ( )[ ]∑ −++=

i
iziyixi rjzzSyzSxzS ].exp[ˆˆˆ σE .       (4) 

( ) ( ) ( )[ ]∑ −++=
i

iziyixi rjzzUyzUxzU ].exp[ˆˆˆ
0

0 σ
µ
ε

H ,       (5) 
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where ziKkykxk Gzzyxii ˆ)(ˆˆ −++=σ . 
kxi and ky are determined from phase matching condition and kz is the average wavevector in grating region which 

correspond to the average permittivity in that region, and ]ˆ)cos(ˆ)[sin(2 zx
G

G φφ
Λ

π
+=K  is the grating vector. The        

index i running from –∞ to +∞ denotes the ith space harmonic corresponding to the ith diffracted order in regions I and III. 
Numerically, expansion of the electromagnetic fields in terms of infinite number of space harmonics, i.e. Eqs. (4) and 
(5), is inevitably truncated. For dielectric gratings, all the space harmonics corresponding to propagating Floquet orders 
should be retained in the preceding expansion, where only a few of those terms corresponding to evanescent Floquet 
orders are needed to be included. In contrast, more space harmonics are needed to be kept for metallic gratings.  
Since ε  is a periodic function, it can be expanded in terms of its Fourier series as 

 ∑=
h

rKjh
h

Gezx .~),( εε ,                                           (6) 

where ∫ −=
G

G drer rKjh

G
h

Λ
ε

Λ
ε .)(2~  is the Fourier component of the grating permittivity. 

 
After substituting Eq. (4), Eq. (5), and Eq. (6) in Eq. (2) and Eq. (3) and eliminating the z component of the 
electromagnetic field, a set of four first order coupled differential equations is derived as: 
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where p=i-h and ε~ h is the hth Fourier component of the permittivity profile, i.e. ε, and ah is the hth Fourier component 
of the ε-1 . 
Each component of the space harmonic amplitudes is expanded in terms of Legendre polynomials: 
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Here,
d

dz −
=

2ξ and )(ξmP  are the normalized Legendre Polynomials and d is the grating thickness as is shown in        

Fig. 1. 
It should be noticed that the vector space spanned by Legendre polynomials is a complete one16 and each space 
harmonic amplitude can be expanded in terms of them. Although, truncating the polynomial expansions given in           
Eqs. (11-14) is inevitable, the introduced error is shown to be of no vital importance.  
 
After substituting the above expansions in Eqs. (6-9), retaining the first Mi terms of the expansion, and minimizing the 
truncation error, a set of coupled algebraic equations is derived, representing the Maxwell’s equations in the complete 
space spanned by Legendre polynomials: 
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In these equations, i
mq'  , i

mh' , i
mt ' , and i

ml '  are the expansion coefficients of the first derivative of the Legendre 

expansion in terms of i
mq  , i

mh , i
mt , and i

ml  respectively, and are computed analytically as:  

∑
+

+=
+=

iM

oddml
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m xmx

1
)12(' ,         (19) 

where x can be substituted by q, h, t, or l . 
It should be noticed that each of Eqs. (15-19) result in a set of Mi equations, whereas each space harmonic expanded in 
Eqs. (11-14) is determined by Mi +1 unknown coefficients. Therefore, one needs four further equations, which can be 
obtained by applying boundary conditions12 at z = 0 and    z = d. Appropriate boundary conditions can be applied by 
using the electromagnetic field expressions in regions I and III given in Eq. (20), and Eq. (21), respectively 1.They are 
expanded in terms of plane waves corresponding to diffracted orders: 

∑
+∞

−∞=

−− +=
i

rKj
i

rKj ieeu ..
1

11 RE ) .                                                                                       (20) 

∑
+∞

−∞=
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i

zdrKj
i

ie )ˆ.(
3

3TE .                   (21) 

Here Ri and Ti are reflection and transmission coefficients of each diffracted order, respectively, û is the incident wave 
polarization unit vector, and k1i and k3i are defined as: 

φδα sincossin1 Gxilxi iKkkk −==        (22) 
δα sinsin1kkk ylyi ==         (23) 

222
ylxillzi kkkk −−= ,        (24) 

for l=1,3 (representing region I or III). 
Continuity of the electromagnetic fields at x=0 calls for: 

)0(0 xixiix SRu =+δ .                  (25) 
)0(0 yiyiiy SRu =+δ .                            (26) 

)0()cos( 0110 xiziyyiizyzyi UkRkRkukuk =+−− αδ .        (27) 

)0()cos( 01010 yizixixiizzxxi UkRkRkukuk =−+−αδ .        (28) 
 and at x=d: 

)exp()( djiKdST Gzxixi= .           (29) 
)exp()( djiKdST Gzyiyi= .           (30) 

)exp()(03 djiKdUkTkTk Gzxiziyyiiz =+− .         (31) 

)exp()(03 djiKdUkTkTk Gzyizixixiiz =− .         (32) 
The divergence equation in region I and region III calls for: 

01 =++ ziizyiyxizi RkRkRk .           (33) 

03 =++ ziizyiyxizi TkTkTk .           (34) 
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Eliminating Ri and Ti components from these equations and substituting for space harmonic amplitudes, four equations 
are obtained as: 
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Now Eqs. (15-18) and (35-38) form a complete set equations, through which the unknown coefficients, i.e. i
mq  , i

mh , i
mt , 

and i
ml  are obtained. Consequently, Ri, Ti, and the corresponding diffraction efficiencies can be determined: 

*

1

1
1 )Re( ii

z

iz
i RR

K
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DE −= .                                                  (39)  

*

1

3
3 )Re( ii

z

iz
i TT

K
K

DE = .                                                  (40) 

For lossless dielectric gratings, as a result of energy conservation, one finds: 
∑ =+
i

ii DEDE 131 .                                                  (41) 

3. NUMERICAL RESULTS 

As an example, a transmission grating is analyzed. The parameters according to Fig.1 are: φ = 120˚ (slant angle), α = 42˚ 
(the angle of incidence), δ=45°(tilt angle), ψ=30°, and ε(r’)=2.25(1+0.12 cos(KG.r’)) in region II, and εI  = εIII = 2.25. 
The incident wavelength is 0.6237µm and the grating period is 1 µm. In Fig. 2, diffraction efficiencies corresponding to 
the transmitted orders are plotted versus normalized thickness (d / ΛG) by employing RCWA (solid line), and 
polynomial expansion method proposed in this paper (dashed line) by using 8 polynomial terms for each space 
harmonic. It should be noticed that conventional RCWA analysis becomes unstable for d / ΛG > 3. In contrast, 
polynomial expansion method behaves well enough to handle such a problem. It is obvious that increasing the number 
of retained spatial orders improves the achieved accuracy of the truncated expansion of electromagnetic fields in terms 
of Legendre polynomials. 

Another example is a lamellar grating with the following parameters: α = 42˚ (the angle of incidence), δ=20°(tilt angle), 
ψ=30°, εI =1, εIII = 2.25. Region II is a binary grating with 50% duty cycle. Permittivity of the ridge is 2.25 and that of 
the groove is 1. The incident wavelength is 0.6237µm and the grating period is 1 µm. In Fig. 3 , diffraction efficiencies 
corresponding to the transmitted orders are plotted versus normalized thickness (d / ΛG) by employing RCWA (solid 
line), and polynomial expansion method proposed in this paper (dashed line) by using 20 polynomial terms for each 
space harmonic.  It can be seen that near the normalized thickness of 1, the RCWA results become unstable. 

4. CONCLUSIONS 

In this paper, a Legendre polynomial expansion of electromagnetic fields for grating diffraction analysis in conical 
mounting has been reported. In this case TE and TM polarizations inside the grating are not separable and a vectorial 
three-dimensional analysis is required.  In contrast to conventional modal analysis in which space harmonic amplitudes 
of the fields are expanded in terms of the eigenfunctions and eigenvectors of the coefficient matrix defined by rigorous 
coupled wave equations, the presented method is based on Legendre polynomial expansion. In this method, a set of 
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algebraic equations is derived, which can be easily solved for diffraction efficiencies and electromagnetic field profiles. 
The method shows strong numerical stability. To verify the proposed method, the results of our analysis have been 
compared with that of RCWA and it has been shown that the presented approach yields numerically stable results. The 
physical intuition behind the accuracy of the proposed method can be described by the fact that, even though in practice 
the expansion of the electromagnetic fields in Hilbert space spanned by Legendre polynomials is truncated, each of the 
polynomials remaining in the calculation contains the projection of all electromagnetic eigenmodes of the system. Thus, 
no modal information of the system is fully lost in the truncation process.   
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Fig.1 The general form of a slanted grating in conical mounting 

 
Fig.2 Diffraction efficiency for forward transmitted waves (Phase Grating). The proposed method (Dashed Lines)  

and conventional RCWA (Solid Lines). 
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Fig.3 Diffraction efficiency for forward transmitted waves(Lamellar Grating). The proposed method (Dashed Lines)  

and conventional RCWA (Solid Lines). 
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