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A Legendre polynomial expansion of electromagnetic fields for analysis of layers with an inhomogeneous re-
fractive index profile is reported. The solution of Maxwell’s equations subject to boundary conditions is sought
in a complete space spanned by Legendre polynomials. Also, the permittivity profile is interpolated by polyno-
mials. Different cases including computation of reflection—transmission coefficients of inhomogeneous layers,
band-structure extraction of one-dimensional photonic crystals whose unit-cell refractive index profiles are in-
homogeneous, and inhomogeneous planar waveguide analysis are investigated. The presented approach can be
used to obtain the transfer matrix of an arbitrary inhomogeneous monolayer holistically, and approximation of
the refractive index or permittivity profile by dividing into homogeneous sublayers is not needed. Comparisons
with other well-known methods such as the transfer-matrix method, WKB, and effective index method are
made. The presented approach, based on a nonharmonic expansion, is efficient, shows fast convergence, is ver-
satile, and can be easily and systematically employed to analyze different inhomogeneous structures. © 2006
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1. INTRODUCTION

Recent advances in fabrication technologies have brought
about the possibility of having materials with arbitrary
refractive index profiles made through precise computer
control of the fabrication parameters.! Many materials
used in optical devices are composed of silicon com-
pounds, benefiting from the low cost of silicon technology
and the well-developed techniques used in microelectron-
ics. Many optical devices such as waveguides and inhomo-
geneous photonic crystals can be made using these mate-
rials with arbitrary refractive index profiles. Tailoring the
refractive index profiles to meet certain desired properties
in such structures is of great importance.®™ Therefore in-
vestigating different optical phenomena such as scatter-
ing, guided-mode analysis, and band-structure calcula-
tion in these structures is necessary and requires well-
established, accurate, and efficient methods. Reflection
and transmission calculations from inhomogeneous media
are also of great importance for characterization of fabri-
cated devices.’

Lightwave propagation in periodic structures has been
the subject of considerable attention 1::1tely.6 By optimiza-
tion of the refractive index profile of the unit cell of pho-
tonic crystals, their band structure can be engineered.
Different methods have been proposed for calculating
band structures since Brillouin’ made the earliest at-
tempt at investigating the wave propagation in periodic
media, such as the plane-wave expansion method® (PWE),
the transfer-matrix method® (TMM), and numerical ap-
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proaches such as the finite-difference time domain'® and
finite-element method (FEM)." The PWE is based on the
Fourier expansion of the periodic permittivity and the
amplitude of Bloch waves and suffers from poor conver-
gence especially in those cases in which the refractive in-
dex has a harsh profile. The TMM requires a staircase ap-
proximation of the refractive index profile; thus accurate
calculation of high-order bands requires finer approxima-
tion of the refractive index profile. Numerical methods
are often computationally intensive and yield less physi-
cal intuition and thus are not efficient as optimization
and synthesis tools.

Although exact solutions of the wave equation for inho-
mogeneous waveguides of some specific index profiles are
available in closed form,? many different approximate
methods have been developed for analyzing inhomoge-
neous waveguides of arbitrary refractive index profiles.
The WKB method!®* is widely used as an approximate
approach for analyzing inhomogeneous waveguides,
though its results show reasonable accuracy only when
index variation is slow and the transverse waveguide di-
mension is much larger than the wavelength at free
space.15 Furthermore, the presence of turning points,
causing failure in calculating field profiles, has motivated
a considerable effort in the literature for modifying the
WKB method.>17 Also, in the case of truncated index
profiles, large errors are observed near the mode cutoff
frequencies; such large errors can be ameliorated by one’s
contriving new schemes for correcting the usually ap-
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proximated phase shift of 77/2 in conventional WKB. An-
other well-known approach is the TMM, 81 which yields
exact solutions for step-index waveguides. However, this
approach, requiring a staircase approximation of the re-
fractive index profile for inhomogeneous waveguides, be-
comes tedious and results in complicated transcendental
dispersion equations, which cannot be easily solved.
Other approaches such as the variational method,?° per-
turbation method,?! differential TMM,*?"?* and numerical
methods such as the beam propagation method,?®> FEM, 2
and others®™®® can be used for analyzing inhomogeneous
waveguides.

In the variational approach, the choice of the trial field
is critical, since it should closely resemble the exact solu-
tion. The perturbation method is applicable only in those
cases in which a closely related problem having an exact
solution exists. The differential TMM yields approximate
analytic solutions.?>2* Even though a modified version of
this approach, improving the accuracy of the obtained re-
sults, has been proposed,? it is still problematic for those
cases in which turning points are encountered. The afore-
mentioned numerical methods for analyzing inhomoge-
neous waveguides, despite their accuracy, are usually
computationally extensive and cannot intuitively yield
the physical insight behind the problem. Most of the pre-
viously listed methods give transcendental dispersion
equations, which are difficult to solve. In this regard, dif-
ferent mathematical approaches are put forth for finding
the zeros of the obtained dispersion equation.’*3! A
method based on polynomial expansion for extraction of
electromagnetic eigenmodes in layered structures has
been presented.32 It has been shown that, with this
method, algebraic and easy-to-solve dispersion equations
can be derived for analysis of stratified waveguides. Simi-
lar polynomial expansion has also been applied to analy-
sis of diffraction gratings.>® Here, an extension of such
polynomial expansion-based methods, though with a dif-
ferent formulation for analysis of inhomogeneous layers,
is presented. The presented method is based on a Leg-
endre polynomial expansion of electromagnetic fields and
is proposed for analyzing inhomogeneous layers. The per-
mittivity profile in the inhomogeneous medium is interpo-
lated in terms of polynomials, and then this polynomial-
based interpolation is absorbed in the Legendre
expansion of electromagnetic fields in a wave equation by
one’s employing an interesting property of the Legendre
polynomials. Thus, not only are the electromagnetic fields
expanded in the complete space spanned by Legendre
polynomials but also the permittivity is expressed in
terms of polynomials. This is in contrast to many conven-
tional methods such as the PWE that rely on the Fourier
expansion of the permittivity function and thus avoids the
Gibbs phenomenon in analyzing periodic structures. By
following this method for analysis of inhomogeneous
waveguides, one can derive well-behaved algebraic dis-
persion equations instead of complicated transcendental
dispersion equations. These algebraic dispersion equa-
tions can be easily solved. Also, using the proposed
method, one can obtain analytic expressions describing
the dependency of the optical response of the structures
on their constituting parameters such as the permittivity
profile. In this regard an example is given to analytically
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demonstrate how the range of single-mode operation of
parabolic waveguides can be engineered by one’s chang-
ing the permittivity profile. Such analytic expressions not
only yield physical insight into the problem but also can
be useful for finding rules of thumb in synthesis and op-
timization processes. The proposed method is efficient in
many commonly encountered problems and can be easily-
implemented for analyzing different problems including
scattering of light waves from inhomogeneous layers, in-
homogeneous photonic-crystal band-structure calculation,
and guided-mode analysis of inhomogeneous waveguides.
The formulation is given so that it can be implemented
easily and in an automated manner. This paper is orga-
nized as follows. A polynomial expansion formulation for
analysis of inhomogeneous layers is presented in a gen-
eral case in Section 2. In this section the appropriate
boundary conditions for calculation of reflection—
transmission coefficients, band-structure calculation of
periodic structures, and guided-mode analysis are dis-
cussed distinctly. Examples and results are given in Sec-
tion 3, and, finally, conclusions are made in Section 4.

2. FORMULATION

In accordance with the structure shown in Fig. 1, Max-
well’s equations in a source-free inhomogeneous medium
can be combined to obtain the Helmholtz equation for TE
polarization as

VQEy(x,z) + k2n2(x)E'y(x,z) =0, (1)

where £ is the free-space wave vector and n(x) is the rela-
tive refractive index profile.

For any refractive index profile, this equation governs
the electromagnetic fields that can propagate in the struc-
ture. As a result of continuous translational symmetry in
the z direction, the general form of the solution of Eq. (1)
is given by

E,(x,z) = Ulx)exp(-jpz), (2)

where B is the propagation constant determined from the
phase-matching condition.
Substituting this form of solution in Eq. (1) yields

2
@U(x) +[k*n*(x) - B1U(x) = 0. (3)
The above equation, subject to specific boundary condi-

tions at x=0 and x=d, has to be solved to determine Ul(x).
This second-order differential equation has analytic solu-

t

Region I n(x) Region I

Fig. 1. One-dimensional inhomogeneous medium.
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tions for some specific functions of n(x)lz; however, there
are many practical profiles for which closed-form solu-
tions are not available, and thus a considerable amount of
effort is spent on developing methods for analyzing such
structures. In the presented method the solution is sought
in a complete space spanned by Legendre polynomials.
Thus, U(x) is expanded as

400

U) =, q,Pn(8), (4)
m=0

where P,,(¢) are Legendre polynomials, g,, are unknown
expansion coefficients that are determined later, d is the
layer thickness, and é=(2x-d)/d is an auxiliary variable
that maps 0 <x<d to —1<¢<1. This kind of mapping fa-
cilitates future calculations involving Legendre polynomi-
als. Note that, in practice, the expansion in Eq. (4) is in-
evitably truncated to a finite number of terms, say, M,
determined by the required level of accuracy.

After substituting the expansion of Eq. (4) in Eq. (3),
one obtains

+% 2 +o0
> G5 Pl + RO - B2 guPu(&=0. (5)
m=0 m=0

An interesting recursive property of the Legendre polyno-
mials calls for

m+1
——P +
PR L e

me(x) = Pm—l(x)- (6)

That is, any power of x can be easily absorbed in the Leg-
endre polynomials. Thus, it can be readily shown that

D %qP (@) = D XuPr(), (7)
m=0 m=0
where
m m+1
Xm =G dm-1+ oo (8)

Equation (8) can be arranged in a matrix format system-
atically as

D] = DXJl@5n]- )

Therefore, once the matrix [x] is generated, any power of
x can be easily absorbed in the expansion given in Eq. (7),
by one’s multiplying the corresponding power of [ x] to the
vector [q,,].

The permittivity profile, n2(¢), in Eq. (5) can be inter-
polated as

n(O=ag+aré+as+azd+ - +a,é, (10

where a; are expansion coefficients determined by fitting
the above expansion to the profile of n2(¢) by using such
algorithms as least-squares error. The appropriate value
of & is chosen so that the expansion given in Eq. (10) be-
comes an acceptable fit to the profile of n%(¢). In many
cases such as linear and parabolic profiles, n%(¢) can be
exactly described by maintaining a finite &, whereas pro-
files such as exponential, Gaussian, and other more com-
plicated ones can be described within an acceptable ap-
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proximation by wusing a proper value of A.
Notwithstanding, one can maintain any required number
of terms in Eq. (10) to reach the desired level of accuracy
in the polynomial interpolation of n2(¢).

By substituting for n2(¢) from Eq. (10), doing some
mathematical manipulations, and projecting Eq. (3) on
Legendre polynomial basis functions, one can obtain a set
of equations as

d 2 d 2
[Fm]+k2<§) Ean[X]n[Qm]_BZ(E) [qm]=0, (11)

where m runs from 0 to M -2 and r,, are the expansion
coefficients of the second derivative in terms of ¢,,, de-
fined by

om+1 M
o = > (l+m+D(I-m)q,. (12)
2 l=m+2t
t=1,2,3,...,

Note that, thus far, the number of unknowns is M+1,
since in the truncated version of the expansion of Eq. (4)
m runs from 0 to M, resulting in M+1 q,, unknown coef-
ficients. Equation (11) constitutes a set of M -1 indepen-
dent equations resulting from the Helmholtz equation,
and two other equations arising from boundary conditions
at x=0 and x=d are needed to fully determine the un-
known coefficients.

Boundary conditions call for the continuity of the tan-
gential electromagnetic fields at x=0 and x=d. The elec-
tromagnetic fields in region I at x=0 can be described as

E,=U, exp(-jpz),

1
H,=—V,exp(-jBz) (13)
wp

and in region III at x=d as

E,=U;exp(-jpz),

1
H, = a)_,LLV3 exp(—jpz). (14)

In these expressions, w is the angular frequency, and u is
the magnetic permeability that is equal to the free-space
permeability, since here only nonmagnetic media are
dealt with. The factor 1/wu is included for simplification
of subsequent formulas. Continuity of tangential electric
and tangential magnetic fields requires

M
U=, quPn(-1),
m=0
M
Vi=j2 ¢uPp(-1) (15)
m=0

at x=0, and
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M
Us= >, ¢nPn(l),
m=0
M
V=7, qnP,(1) (16)
m=0

at x=d. In the above equations P;,({)|s. is the first de-
rivative of P,,(¢) evaluated at é=+1. Equations (11), (15),
and (16) constitute a complete set of equations for deter-
mining unknown g, coefficients. Equations (15) and (16)
each constitute two equations that can be combined to
yield one equation describing the boundary condition at
x=0 and one equation at x=d. Although boundary equa-
tions are generally described here as Eqgs. (15) and (16),
the way that U; and V; and Us and V3 are related to each
other depends on the nature of the problem. Henceforth,
three distinct cases are investigated: the reflection—
transmission problem, band-structure analysis of one-
dimensional inhomogeneous photonic crystals, and inho-
mogeneous planar waveguide analysis.

A. Reflection-Transmission Analysis

In this subsection appropriate boundary conditions for
the analysis of reflection and transmission from an inho-
mogeneous layer, when a lightwave is obliquely incident
from region I, is discussed. In this case we have

U =1+R,

Vi=ka(1-R), (a7
Us=T,

Vy=k,sT, (18)

where R and T are reflection and transmission coeffi-
cients, respectively, and %,; and %,3 are normal wave vec-
tors in region I and region III, respectively. The amplitude
of the incident wave is normalized to unity.

Substituting Eqgs. (17) and (18) in Egs. (15) and (16),
one can obtain appropriate boundary equations. Simulta-
neously solving the set of equations from Eqs. (11), (15),
and (16), one can determine the values of R, T, and g,,,.
Note that the set of equations to be solved are algebraic
equations, which can be easily handled.

B. Band-Structure Analysis

Inhomogeneous photonic crystals have been the subject of
considerable attention in the literature.® An inhomoge-
neous one-dimensional photonic crystal is simply con-
structed by periodical repetition of an inhomogeneous
layer such as the one depicted in Fig. 1. For analyzing
such structures, Bloch boundary condition must be ap-
plied. The Bloch boundary condition calls for

Us , U,
v, = exp(—jkd) v, | (19)

Two normalized quantities are introduced: normalized
frequency defined by w,=(w/c)d and a normalized Bloch
wave vector defined by «,=xd. One obtains band struc-
ture by plotting w, versus k,. By using the relation in Eq.
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(19) between electromagnetic fields at x=0 and x=d and
Egs. (11), (15), and (16), one can easily obtain the band
structure by scanning w,, and calculating the correspond-
ing values of «,. This can be done in two ways, first, by
setting the determinant of the coefficient matrix of the re-
sulting set of unforced equations to zero and, second, by
organizing the equations in an eigenvalue problem form.
The latter is accomplished by one’s obtaining the transfer
matrix of the inhomogeneous layer in terms of Legendre
polynomials. Equations (11), (15), and (16) are repeated
here in their matrix form:

[Allg,.]=0, (20)
_ Uy

[Bl[Gn]= v, | (21)
_ Us

[Clg,]= v, | (22)

[A] is a (M-1)X (M+1) matrix, and [B] and [C] are 2
X (M+1).

The transfer matrix of the inhomogeneous layer is
therefore obtained as

A1y +1) ] _1[ [0](M—1)><(M+1):|

By

12><2

[Q]= [C2><(M+1)]|:

(23)

where [A(/_1)xw+1)/Baxa+1)] Tepresents a matrix whose
upper part is filled with the matrix [A] and its lower part
is filled with [B], and [0] is a null matrix of (M -1) X (M
+1) dimensions.

The transfer matrix relates the electromagnetic fields
at x=0 to the fields at x=d:

Us Uy
v =@y | (24)

By using the transfer matrix, it is easy to show that

q11tq
cos(k,) = %, (25)

where ¢1; and ggs are the diagonal terms of [@]. Note that
the transfer matrix of the inhomogeneous layer is ob-
tained holistically, without dividing the structure into ho-
mogeneous sublayers.

C. Waveguide Analysis

There has been a considerable amount of study on the
confined modes of inhomogeneous slab waveguides. This
is due to the advancements in fabrication techniques, es-
pecially the diffusion technique, and the need to control
dispersion properties of optical waveguides. For analyzing
bounded states of planar inhomogeneous waveguides,
boundary conditions are

Vi=jnUi, (26)

Vs =-jyUs, 27

2 2 2

where ;=\ -k2n? and y3=1B2-kin.
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By using the relations of Eqgs. (26) and (27) in Egs. (15)
and (16) and solving with Eq. (11), one can calculate the
values of B for each frequency and, consequently, obtain
the dispersion diagram of the inhomogeneous waveguide.
In the subsequent examples on waveguide analysis, the
normalized frequency is ),=d/\, and the effective index
is defined as N g=pBd/27(),,.

3. RESULTS AND EXAMPLES

Examples and results are presented in three distinct
parts: first, two examples on the calculation of reflection
and transmission coefficients of inhomogeneous layers are
given; second, some examples on the band-structure cal-
culation of inhomogeneous one-dimensional photonic
crystals are given; and, finally, examples on guided-mode
analysis of inhomogeneous waveguides are presented.
The results have been verified by using exact solutions,
wherever available, and other well-known numerical
methods. In each case, a comparison has been made be-
tween the proposed method and some other approaches.
As the first example, a linear profile, shown in Fig. 2, is
investigated. The refractive index linearly grows from n;
at x=0 to ny at x=d. The normalized reflectance of this

0 Layer Thickness d *

Fig. 2. Linear and exponential permittivity profiles.
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0 0.1 02 03 04 05 0.6 0.7 08 09 1

Fig. 3. Reflectance versus d/\ for the linear permittivity profile
(solid curve) and exponential permittivity profile (dashed curve).
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7 ( Solid Curves: The proposed method
Dashed Curves: conventional TMM

0 0.5 1 1.5 2 25 3 35
Ky

Fig. 4. Band structure of the photonic crystal with an exponen-

tial profile unit cell.

linear profile (solid curve) is plotted in Fig. 3 versus d/\.
It is obvious that only two terms in the expansion of Eq.
(10) are sufficient to perfectly describe this linear profile.
An exact analytic solution is available for reflectance of
this structure.!® With 13 polynomial terms (M=13), the
results are obtained with the maximum absolute error of
2.53x107%. Another example is an inhomogeneous layer
of exponential profile shown in Fig. 2. The refractive in-
dex profile varies as

X ns
n(x) =nq exp p In -
1

from x=0 to ny at x=d. This profile can be approximated
well by six terms in Eq. (10). The normalized reflectance
of this exponential profile is shown in Fig. 3 (dashed
curve). The results obtained by using 15 Legendre polyno-
mial terms (M=15), agrees well with the exact solution;
the maximum absolute error is 3.54 X 1075, Note that any
desired level of accuracy can be obtained by one’s keeping
an appropriate number of polynomial terms.

The second part of the examples is devoted to band-
structure analysis of inhomogeneous one-dimensional
photonic crystals. The first example is a photonic crystal
whose unit cell has the exponential profile shown in Fig.
2. The corresponding band structure for the angle of inci-
dence equal to 42° is shown in Fig. 4, and the normalized
group velocity is shown in Fig. 5. The results are obtained
by using six terms of Eq. (10) and 15 Legendre polynomial
terms, as before.

The conventional TMM is also applied for calculating
this band structure. Using the TMM, we obtain converged
results by dividing the unit cell into 400 homogeneous su-
blayers. In this example, only four bands are dealt with,;
however, the convergence of TMM results is much slower
for higher-order bands. As the number of sublayers in-
creases, the computation time is drastically increased,
whereas the proposed method yields converged results ef-
ficiently. A comparison of computation times of these two
approaches is conducted in Table 1.

Another example is the band-structure calculation of a
photonic crystal with a chirped unit cell, shown in Fig. 6.
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The angle of incidence is 30°. Note that the profile shown
in Fig. 6 has a nearly harsh variation and is discontinu-
ous between any two succeeding cells because the value of
the refractive index at x=0 does not coincide with that at
x=d. Obviously, interpolating such a profile with expan-
sion in Eq. (10) requires keeping many terms. It can be
easily checked that 40 terms in Eq. (10) yield an accept-
able approximation of the profile. Band structure and
group-velocity variation of this photonic crystal are shown
in Figs. 7 and 8, respectively. The results of the polyno-
mial expansion (solid curves), have been obtained by

Solid Curves: The proposed method

05 Dashed Curves: conventional TMM

0.4
0.3
0.2

-0.3

-0.4
-0.5

0 1 2 3 @, 4 5 6 7
Fig. 5. Normalized group velocity versus the normalized fre-
quency for the photonic crystal with an exponential profile unit
cell.

Table 1. Comparison of Computation Times for
Band-Structure Calculation Using the Proposed
Method and TMM

Exponential Chirped
Profile Profile
Method (s) (s)
Conventional TMM 114.25 51.06
Proposed method 7.06 30.5

Thickness

Fig. 6. Chirped refractive index profile.
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Solid Curves: The proposed method
Dashed Curves: conventional TMM

6.5
S 6
5.5
5 A n . ) ) L
0 0.5 1 1.5 2 25 3
Ky
Fig. 7. Band structure of a chirped photonic crystal.
Solid Curves: The proposed method
0.3 Dashed Curves: conventional TMM
0.2
0.1
0
p&
-0.1
-0.2
-0.3
04 : . - . ,
5 5.5 6 6.5 7 7.5
Wy

Fig. 8. Normalized group velocity versus the normalized fre-
quency for the chirped photonic crystal.

keeping 27 polynomial terms (M =27). And the results of
the TMM are obtained by dividing the unit cell into 300
sublayers. A comparison of the computation times are
given in Table 1. To further verify the results, we employ
the effective index method®* in the well-known Bragg for-
mula to obtain the center of the bandgaps as

mar
e — 28
1 g c0S(Gog) (28)

where m is the number of the bandgap. The results are
summarized in Table 2, which agree well with those de-
picted in Figs. 4 and 7.

The final examples are given on a guided-mode calcu-
lation of an inhomogeneous slab waveguide. A parabolic
profile waveguide shown in Fig. 9 is analyzed. This profile
can be exactly described by three terms of expansion in
Eq. (10). The dispersion diagram of this waveguide,
shown in Fig. 10, is obtained by calculating the corre-
sponding values of 3, in each normalized frequency, The
results agree well with those reported in Ref. 17 at Q,
=2.3857. The dispersion diagram calculated by keeping
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eight polynomial terms (M =8) agrees within a maximum
difference of 1% with that obtained by the TMM using 200
sublayers. Also, for the sake of further verification, guided
modes calculated at ,=2.3857 by using the polynomial
expansion method, the TMM, and the WKB method are
compared in Table 3. Note that calculating the overall dis-
persion diagram for this waveguide by using the WKB
method is cumbersome, since for the guided modes whose
effective indices are near or at the discontinuity the con-
ventional phase shift of #/2 at turning points does not
work, and appropriate phase shifts must be substituted.'®

Table 2. Forbidden Frequencies Calculated Using
the Bragg Formula Corresponding to the Band
Structures Shown in Figs. 4 and 7

Vol. 23, No. 5/May 2006/dJ. Opt. Soc. Am. B 975

Table 3. Comparison of the Effective Indices of the
Parabolic Waveguide Shown in Fig. 9 at
Q,=2.3857, Obtained by Using the Proposed
Method, Conventional TMM, and WKB Method

Effective Index Effective Index

Method (First Mode) (Second Mode)
Proposed method 3.586176 3.594406
Conventional TMM 3.5686170 3.594396
(200 sublayers)

WKB — 3.594673

Table 4. Comparison of the Computation Times of
the Polynomial Expansion, TMM, and WKB,

Botr Corresponding to the Parabolic Waveguide Shown
Method Totr (rad) W, in Fig. 9
Exponential 1.9956 0.3419 1.671 Second Mode
profile (m=1) Overall Dispersion Computation
Chirped 3.5295 0.0354 5.3439 Diagram Computation Time at a
profile (m=86) Time (Frequency Single Frequency
Steps=0.01) ,=2.3857
Method (s) (s)
Proposed method 1399 0.85
1295 Conventional TMM 5948 3.28
(200 sublayers)
WKB — 4
1292
Rt 1.855
=129
1.85
12.88} 1.845]
1.841
12.86} §
$1.835
12.8501 g
_ _ 1.83
0 Thickness d x 1.825
Fig. 9. Parabolic permittivity profile waveguide with n,
=3.5986 and A=0.0448. 1.82
1.815
= © = o
3.598 181 3 4 5 6 7 8 9 10
M
3.596 Fig. 11. Convergence of the second mode cutoff frequency ver-
sus the number polynomial basis functions.
1Y S 1 :
3590 ! Also, since this waveguide has a discontinuous refractive
§ ’ ; index profile, the WKB results lose their accuracy near
3.590 : the cutoff frequencies.’® The computation times corre-
i sponding to the polynomial expansion method, the TMM,
3588 : and the WKB method are compared in Table 4.
’ ' For showing the convergence rate of the proposed
3586 ; polynomial-based approach, the cutoff frequency corre-
’ i sponding to the second guided mode is plotted versus the
e T T T 5 s o s polynomial basis functions in Fig. 11; it can be seen that
2,

n

Fig. 10. Parabolic waveguide dispersion diagram.

after six polynomial terms (M = 6) are used the cutoff fre-
quency converges within 2% of its final value. With the
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proposed method, the effect of different parameters of the
waveguide refractive index profile on the frequency range

over which the waveguide is single mode can be easily in-

Chamanzar et al.

vestigated. Here an analytic expression is given that de-
scribes the dependency of the second mode cutoff fre-
quency on A, the parabolic profile height, shown in Fig. 9:

0.154 — 0.820A - (0.526A% - 0.174A + 0.0161) 2 |2

QZ(cutoﬂ‘) = 9549|:

By appropriately choosing A in Eq. (29), one can adjust
the frequency range over which the waveguide is single
mode. Equation (29) is obtained by six polynomial terms,
and it can be easily shown that () is 2.6281 and oc-
curs at A=0.1262.

4. CONCLUSIONS

In this paper a new method for analyzing inhomogeneous
optical structures based on the Legendre polynomial ex-
pansion of electromagnetic fields is reported. Different
problems including calculation of reflection—transmission
coefficients of inhomogeneous layers, band-structure cal-
culation of inhomogeneous one-dimensional photonic
crystals, and eigenmode extraction of inhomogeneous
waveguides are investigated. In this approach, the elec-
tromagnetic fields expanded in terms of orthogonal Leg-
endre polynomials are substituted in the Helmholtz equa-
tion, where the (d2/dx?)U(x) and k2n2(x) terms are
analytically expanded in terms of Legendre polynomials
by using the relevant properties, i.e., Eqgs. (12) and (6),
and interpolating the permittivity profile. These analytic
expressions yielding the matrix form of Eq. (11) consider-
ably augment the efficiency of the proposed method. This
approach yields algebraic, easy-to-handle equations. Es-
pecially, in the case of eigenmode analysis of inhomoge-
neous waveguides, instead of transcendental dispersion
equations, algebraic dispersion equations are derived,
which can be easily solved. The presented approach can
be used to obtain the transfer matrix of an arbitrary in-
homogeneous layer holistically, eliminating the need for
dividing the refractive index or permittivity profile into
homogeneous sublayers. Comparisons with other well-
known methods are made, and the results are verified.
This approach benefiting from the regular behavior of
polynomials is versatile and can be systematically applied
to any arbitrary inhomogeneous structure. For many
practical structures, this approach works quickly and ef-
ficiently, and this is particularly suitable for fast calcula-
tion of reflection—-transmission coefficients for real-time
monitoring of fabrication processes. Also, with the pro-
posed method, approximate analytic expressions describ-
ing the effects of different parameters on the optical re-
sponse of the structure can be derived; such analytic
expressions are valuable for synthesis and optimization
purposes.
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