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Fabry-Perot resonance of water waves
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We show that significant water wave amplification is obtained in a water resonator consisting of two spatially
separated patches of small-amplitude sinusoidal corrugations on an otherwise flat seabed. The corrugations reflect
the incident waves according to the so-called Bragg reflection mechanism, and the distance between the two
sets controls whether the trapped reflected waves experience constructive or destructive interference within the
resonator. The resulting amplification or suppression is enhanced with increasing number of ripples and is most
effective for specific resonator lengths and at the Bragg frequency, which is determined by the corrugation period.
Our analysis draws on the analogous mechanism that occurs between two partially reflecting mirrors in optics, a
phenomenon named after its discoverers Charles Fabry and Alfred Perot.
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I. INTRODUCTION

Fabry-Perot cavities are standing-wave resonators com-
monly used in optics, quantum physics, and astronomy [1-3].
In its simplest form, an optical Fabry-Perot cavity consists
of two partially reflecting mirrors surrounding a dielectric
medium. Light waves entering the cavity undergo multiple
partial reflections between the two mirrors which construc-
tively interfere at resonance frequencies determined by the
round trip propagation delay and the phase shifts incurred at
the mirrors [4]. The Fabry-Perot device was originally applied
in interferometry but is now also used in laser resonators due
to its ability in amplifying the radiation field within the cavity
[5].

Seafloor variations in the ocean can, much like mirrors
and lenses in optics, significantly affect the propagation of
incident waves. While seabed inhomogeneities generally lead
to water wave scattering due to the absence of coherence
between the multiple scattered waves, instances of constructive
interference due to periodic undulations of the seabed have
been observed in nature, such as in the Rotterdam waterway
[6,7], Cape Cod Bay in Massachusetts [8], and near numerous
shorelines [9]. The strong reflection of surface waves by
bottom corrugations, which has also been demonstrated in
the laboratory [10-12], relies on the well-known Bragg
mechanism discovered in solid-state physics [13] and first
reported in the context of water waves by Davies [14]: surface
waves with wavelengths twice the wavelength of seabed cor-
rugations experience coherent reflections. Interestingly, Bragg
resonance between surface waves and seabed corrugations
is also the reason why natural sandbars, which can be seen
parallel to shore in many coastal areas [9], are sinusoidal with
wavelength equal to half that of the local surface waves [15,16].
The same Bragg reflection is found in optics when light waves
encounter multilayer dieletric coatings that offer significant
advantages over single-layer mirrors [5].

Even though seabed corrugations act like partially reflective
mirrors, the Bragg reflection of water waves does not always
lead to decreased wave activity downstream of the corruga-
tions. Indeed, Yu and Mei [17] confirmed the earlier conjecture
[18] that the presence of a bar patch upstream of a reflective
beach could result in shoreward wave amplification, rather than
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attenuation, for specific patch-to-shore distances. Their result
has now been extended to the normal modes of oscillation
of a corrugated wave tank [19,20] and will be related to the
resonance studied in this work.

Here we show that significant wave amplification or
suppression can be achieved in a region of constant water
depth bounded by two sets of small-amplitude corrugations
(see Fig. 1). We thus demonstrate the analogy between the
underlying water wave trapping mechanism and the Fabry-
Perot resonance in optics based on distributed Bragg mirrors
[21,22]. We obtain the resonance condition for water wave
amplification and suppression close to the Bragg frequency
using multiple-scale analysis, and we investigate the effect
of the reflectivity of the patches as well as resonator length
between the two mirrors on the field enhancement and trans-
mission spectra. Our results are obtained within the framework
of the linear potential flow theory and are then extended in the
conclusion by discussing and providing suggestions on how to
consider the effects of wave directionality, bottom irregularity,
and viscosity.

II. BRAGG MIRRORS FOR WATER WAVES

Consider the propagation of surface gravity waves on an
incompressible, homogeneous, and inviscid fluid. The flow
is assumed irrotational such that the velocity field u can be
expressed in terms of a velocity potential ¢ as u = V¢. In a
Cartesian coordinate system with x,y axis on the mean free
surface and z axis positive upward, the linear form of the
governing equations for ¢ reads

V=0, —h<z<0, (1a)

&y +8p. =0, z=0, (1b)

¢ =Vut-Vu¢, z=-h+x,y), (1o

in which Vy = (0;,d,) is the horizontal gradient operator,
z = —h describes the position of the mean seabed, and ¢

represents the small seabed undulations. The free surface
elevation n(x,y,t) is related to the velocity potential through

n=—¢/g.
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FIG. 1. (Color online) Schematic of a water wave Fabry-Perot
resonator. Surface waves interact with two patches of ripples
(wavelength A,) on an otherwise flat seabed. / is the resonator length
and L112 = NI,Z)"h’ N]'z e N.

Here we assume that the problem is two-dimensional,
ie. 3/dy =0. On a flat seabed (i.e., ¢ = 0), the left- and
right-propagating wave solutions of Eqs. (1) have constant
amplitudes, and the free-surface elevation reads

n(x,t) = (Ae ™ 4+ Bel*)el! 4 c.c. )

with c.c. denoting the complex conjugate. The surface wave
number k and the wave frequency w are related through the
dispersion relation

w? = gk tanh kh. (3)

Above a region with corrugated seafloor (e.g., no. 1 or no. 2 in
Fig. 1), the waves have varying amplitudes due to wave-seabed
interactions, and the general solution becomes

n(x,t) = [AQx,0)e ™ + B(x,ne* e’ +cc.  (4)

The classical case of a single patch with corrugations of the
form

x € [x°,x°],
elsewhere,

¢(x) = ®)

dsinlkp(x — x*) — 0],

0,
where d is the amplitude of the ripples, 6 the corrugations’
phase, and x° and x¢ the start and end of the patch, is
known to strongly reflect surface waves with wave number
k=ky/2 + K, k/kp < 1. For waves coming from x = —oo
and small corrugation amplitude k,d < 1, Mei [23] showed
that the steady-state solution for the wave envelope amplitudes
leads to the so-called Bragg reflection and transmission
coefficients here rewritten as

RE B(x*) ¢ % sinh Sw )
= = s a
A(x*)  wcosh Sw + iw sinh Sw
A(x®) w
T8 = = , 6b
A(x%)  wcosh Sw + iz sinh Sw (6b)
where
kyd
=9/, w=yI—w2 Q=-2LC (73
4 sinh kph
QL Nrkyd
= S (7b)

C, _ 2(sinhkyh + kyh)’

The reflection and transmission coefficients (6) are valid for
wave frequencies in the vicinity of the Bragg frequency, i.e., for
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FIG. 2. (Color online) Effect of detuning @ on the normalized
reflected wave amplitude R® = |R?| and phase a? = arg(R?) off
a water Bragg reflector with § = 0 [cf. Eq. (6a)]. R® and of are
shown for S = 0.75 (solid), 1.5 (dotted), 4 (solid) while keeping the
cutoff frequency Q¢ fixed [cf. Eq. (7a)]. The reflection strength R is
strongest and almost constant within the primary resonance tongue,
unlike aZ.

w = w, + Q2 where w, = w(k =k;,/2) and Q = Cox K wyp
with C; = dw/dk the wave group velocity [cf. Eq. (3)]. In
Egs. (7), N is the number of corrugations, and the parameter
Q€ used to normalize the dimensional detuning frequency 2
is called the cutoff frequency since for 2 < Q€ the envelope
modulations are exponential over the corrugations whereas
they are oscillatory for 2 > Q€. The variable S, which can be
rewritten as tanh § = |R8(w = 0)| = RE, is a measure of the
reflected wave amplitude at the Bragg frequency.

The effect of detuning on the reflected wave amplitude
R® = |R?| and phase shift «® = arg(R?) off a single patch
of corrugations is shown in Fig. 2 for various values of the
parameter S. As expected, R(If increases with S, i.e., with
an increase in the number of ripples N or ripple amplitude
d/h, as well as with a decrease in the normalized water
depth k,h. While increasing d/h is analogous to increasing
the refractive index contrast in mirrors made of alternating
dielectrics in optics [5], here we remark that the effect of
decreasing kyh on the reflection coefficient has no direct
equivalent in optical systems. This is of course due to the
fact that water waves are surface waves, which experience
stronger seabed effects with smaller normalized water depth
kh. Water-wave dispersion by the fluid medium yet vanishes
in the long-wave regime, i.e., when kh < 1, in which case RB
becomes independent of k,h and reaches a maximum value.
The primary resonance tongue, i.e., where RE is the strongest
and only mildly varying, typically extends to || < 1. At
the Bragg frequency, a® = —@ such that a set of ripples acts
like a partially reflecting wall when 8 = 0, with a free-surface
antinode formed at the beginning of the patch. Unlike R?,
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the phase shift «® changes significantly within the primary

resonance tongue (see Fig. 2). Indeed, a® increases for longer
wavelengths (i.e., @ < 0), which corresponds to a downstream
displacement of the antinode upwave of the leading seabed
crests. The phase shift due to detuning extends up to +m /2 at
the edges of the primary resonance tongue when S — oo.

III. FABRY-PEROT RESONANCE

Let us now construct the water wave analog of an optical
Fabry-Perot cavity using two patches of seabed corrugations
as water wave mirrors. We consider the seafloor variations

dsin[ky(x —x}) —61], x € [x],x¢],

¢(x) = {dsin[ky(x — x3) — 6], x€[x3.x5], (8
0, elsewhere,

where x{ = 0,x3 = x{ +[,x{, — x], = NiXs (see Fig. 1).
Subscripts 1 and 2 apply to variables for the upstream and
downstream patch respectively. We refer to the parameter /
separating the two patches as the resonator length. Similarly
to the Bragg reflection and transmission strength coefficients
obtained for each one of the two patches taken individually,
noted R, and T\%, we define a Fabry-Perot reflection and

transmission strength coefficient as RP = [B(x})/A(x?)|
and TFP = |A(x$)/A(x})|. The derivation (provided in the
Appendix) yields

RFP I:(RF)2+ (Rég)2 —2RPR? Cosy]1/2 o0

- , a
I+ (RERE)” —2RPRE cosy

{ [t - (RP)°)[1 - (RE)']

TFP
1+ (RERB)® —2RBRB cosy

172
} , (9b)

where
y=m —201 +2kl —a; —ay (10)

is the round trip phase shift. In Eq. (10), 24/ is the propagation
phase accumulation and « , are the phase shifts incurred upon
reflection at the Bragg mirrors. When y = 2mm (m € N), the
partially reflected waves in the interior region constructively
interfere, and the Fabry-Perot resonance condition is satisfied.
The resonant wave numbers obtained for a given resonator
length [ and corrugation wave number k;, therefore become

_ Cm+ Dr +261 +a1 +ay "
N 21 ’

It should be noted that (RF?)? + (T¥P)? = 1, which is in
agreement with the principle of energy conservation. The max-
imum normalized free-surface elevation within the resonator
is given by the so-called field enhancement parameter, i.e. (cf.
the Appendix),

k eN. (1D

AGs5)| + B(x0) TP
=2 = =(14+RY)——. 12
Ay UHR)gE 0

—~

The highest achievable field enhancement E occurs when
one of the Fabry-Perot resonant wave numbers is k = k;/2.
Substituting k = k,/2 into Eq. (11) we thus obtain the
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FIG. 3. (Color online) Transmission and field enhancement spec-
tra for || < 1. The number of resonant modes increases with
increasing resonator length / (13) (I = lSB: dashed line, [ = 1330: solid
lines), while the maximum field enhancement values max E (12)
increase with increasing mirror reflectivities Rf = Rf,(z = 0). The
cutoff frequency €2¢ (7a) is the same for all three curves.

condition on the resonator length, i.e.,

_ Cm+ D +6; + 6, m
= 5 ,

1=18 €N, (13)

leading to the highest possible E. Interestingly, we find
that Eq. (13) reduces to the classical Fabry-Perot in-phase
resonance condition, [ = mm /k, when 6; 4+ 6, = m. This can
be explained in terms of effective resonator length. In the
case of positive corrugation slope next to the interior region
for both Bragg reflectors, i.e., when 6; = 7 and 6, = 0, there
is no phase shift incurred at the mirrors for waves coming
from the inside at the Bragg frequency, and the effective
resonator length is simply the distance ! between the two
reflectors. The effective resonator length is instead / 4+ A, /2
when 6; = 6, = 0 as the upstream patch reflects waves in the
interior with a v phase shift.

The wavelength separation AX between adjacent trans-
mission peaks, also called the free-spectral range (FSR) in
optics [24], can be obtained from the Fabry-Perot condition
(11) as AX = Ay41 — Ay. Similar to k, AA cannot in general
be explicitly expressed as a function of / because «, are
nonlinear functions of k = 27 /A through @ [cf. Eq. (6a)].
Close to the Bragg frequency we may yet approximate it as
AL~ 2)\12,/1 (since a1 » = —0;, at w = 0), showing that, as
in optics, the FSR is inversely proportional to the length of
the interior region. The transmission and field enhancement
spectra are shown in Fig. 3 for two different Bragg reflection
coefficients (assuming Rf = R¥) and resonator lengths / =
18. Comparing the two solid lines, obtained for a long interior
region [ =15 (13), it is clear that large Bragg reflection
coefficients result in higher transmission extinction and higher
field enhancement between the two mirrors. In addition, we
see that increasing Rﬁz modifies the FSR by changing the
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FIG. 4. (Color online) Field enhancement spectrum in a very
short resonator of length [ = I8 + 87 /k;, [cf. Eq. (13)] for R{ =
Rﬁz(w = 0) = 0.8,0.95 (solid, dashed lines). E is maximum at the
Bragg frequency when the resonator length is chosen to produce
constructive interference at @ = 0 (§ = 0), whereas the resonant
peak is shifted to lower frequencies when the interior region becomes
longer (§ =1/4). When § =1, the resonant modes fall outside
the Bragg frequency bandwidth such that destructive interference
dominate for |z | < 1. The cutoff frequency 2¢ (7a) is the same for
all four curves.

locations of the resonance frequencies. The FSR significantly
increases when the resonator is smaller, such that the secondary
Fabry-Perot resonant modes are pushed outside the Bragg
reflection bandwidth (cf. dashed line in Fig. 3).

As opposed to being enhanced, incident waves whose
frequencies lie within the Bragg reflection bandwidth can be
suppressed between the two mirrors by detuning the resonator
from the Fabry-Perot resonance condition (13). To make this
apparent, we rewrite the resonator length as

1 =18 +8m/ky, (14)

where lfl satisfies Eq. (13),m € Nand é € [0, 2]. The partially
reflected waves in the interior region are in phase at the
Bragg frequency, thus enhanced, when [ = [5. We show the
effect of the offset parameter § # 0 on the field enhancement
experienced by a very small resonator (m = 0) in Fig. 4.
When § = 1/4 > 0 the primary Fabry-Perot resonant mode
is shifted to smaller frequencies, i.e., longer waves, because
of the increased resonator length. At the critical offset § = 1,
the Fabry-Perot transmission peaks all lie outside the Bragg
frequency bandwidth, which is therefore centered on a region
with small field enhancement. The suppression strength, i.e.,
E~!, increases with the mirrors’ reflection coefficient (cf.
dashed line in Fig. 4). We note that while a Bragg reflection
coefficient of about 80% is needed to achieve an amplifi-
cation (] = lfyf ) =3 at w = 0 (m arbitrary), an equivalent
field suppression of E(/ =18 + 7 /k,) = 1/3 would require
|R52| = 95%, i.e. higher reflectivity mirrors. This result can
be generalized analytically in the limit where |szl — 1 for
which (I =18y x B =18 + 7 /ky) — 4.

When waves come from all directions, the highest averaged
wave amplification is achieved by setting Rf = R?, or
equivalently by fixing N; = N, = N'**/2 where N'! is the
total number of ripples. In the case where incident waves come
primarily from one direction (say, upstream of patch no. 1),
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FIG. 5. (Color online) Significance of the ripples distributions
(N, and N;) on E for perfectly tuned waves coming from x = —oco
and for various N*' = N; + N, (cf. Fig. 1). The amplification reached
at optimal distribution [cf. Eq. (15)] is shown by the dashed line, and
is less than that obtained with a wall substituted for the second patch
(i.e., for Ny = N* and N, — o0; see dash-dotted line); ki = 1.64,
kyd = 0.164.

however, the field enhancement within the interior region can
be optimized by finding the appropriate distribution of ripples
N such that E is maximum for a fixed N*'. The effect of
Nj on E is shown in Fig. 5 for perfectly tuned surface waves
(w = 0), an optimal spacing [cf. Eq. (13)], and for various
total number of ripples N'*'. The maximum field enhancement
E is always obtained for N\ < N/2, i.e., RF < R%, with
the difference (N''/2 — N{™)/(N'/2) being the greatest for

low reflectivity mirrors. The optimal N} P! is unique and can be
obtained by maximizing E as a function of N, for fixed N'*.
We find

opt __

1
= —arctanh|:
2s

1 — 2tanh Nt
a—] (1)

tanh s Nt©ot — 2

where s = Q°A,/C, [cf. Egs. (7)]. The growth of maximum
wave amplitude between the two patches is exponential with
the number of corrugations since E(N,™) ~ 2expsN'©/2
when s N — oo. Interestingly, we note that while choosing
Nj # N, results in a different field enhancement E for left-
going and right-going waves, the Fabry-Perot reflection and
transmission coefficients remain the same for both incident
wave directions. This symmetry can be clearly seen from the
formulas (9) for Rrp and Trp, which are unchanged under
RIB <~ RZB swaps.

The transient buildup of wave trapping within a Fabry-Perot
resonator is finally shown in Fig. 6 for perfectly tuned waves
coming from x = —oo. The interior region is designed to
amplify almost optimally right-going Bragg frequency waves
with kyh = 1.64, kpd = 0.164, Ny = 11, and N, = 15, such
that RF = 60% and R = 73% at @ = 0. Assuming a peak
wave period of 7s, it follows that the resonator is designed
to trap 52 m long waves in 6.7 m water depth. The numerical
results are obtained utilizing the high-order-spectral (HOS)
method [25,26]. Trapping occurs very rapidly as shown by
the beginning of increased wave envelope amplitude in the
interior region for t/ T = 25. The steady state is reached after
~100 peak wave periods, which corresponds to ~1.6 times
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FIG. 6. (Color online) Transient build up of Fabry-Perot reso-
nance for perfectly tuned water waves coming from x = —oo. The
resonator length is [ =1 (13). The normalized wave envelope
n* = (|A| + |B])/ag, with ay = 107k the incident wave amplitude,
is shown at six different successive times. The physical parameters
are kyh =1.64, k,d =0.164; N, =11, N, = 15. Note that the
amplitude of the ripples has been exaggerated in this figure. The
spatial resolution of the HOS numerical simulation is Ny = 22 and
Ny = 64 time steps were used per wave period simulated.

the round trip propagation time between the two most distant
corrugations.

IV. CONCLUSIONS

In summary, we showed that water wave trapping occurs
within a water resonator made of two distinct sets of seabed
corrugations, and we demonstrated the analogy with the Fabry-
Perot resonance in optics. We found that the highest possible
wave amplification or suppression takes place at the Bragg
frequency, and we obtained the corresponding resonance
condition for the resonator length (13). Neglecting viscosity,
we found that the field enhancement (12) increases infinitely
with increasing mirrors’ reflectivity within the validity of
the linear potential flow theory. As for the Bragg reflection
coefficient (6a), the field enhancement or suppression becomes
independent of the normalized wavelength k,h in the long-
wave regime, in which case the water resonator becomes fully
analogous to the classical optical Fabry-Perot cavity due to the
absence of dispersion by the fluid medium.

Fabry-Perot resonance of water waves may be utilized,
through engineered seabed bars, to enhance wave energy
extraction efficiency or to protect offshore structures. While
investigation of the possibility of occurrence and the role of
such effects in the dynamics of oceans is beyond the scope of
this paper, we would like to comment that the assumption
of similar ripple wavelengths for the two patches is not
unrealistic for naturally occurring ripples since the periodicity
of, e.g., sandbars is directly dependent on the local wave
conditions, which do not change much on distances of the
order of a few hundreds surface wavelengths. Furthermore,
the special case of a single patch of ripples adjacent to a
reflecting wall can be treated similarly to a two-patch system
(cf. Fig. 5, dash-dotted line corresponding to N'*' = 00)
and may be easily realized in real oceans, e.g., in the area
between near-shore sandbars and the shoreline [17]. The
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localized amplifications of water waves excited from within
a closed-ends tank with one patch of ripples [20] can also be
discussed based on our analysis of the Fabry-Perot resonance
and is in fact reminiscent of the working principle behind laser
resonators.

In either case of engineered or natural seabed bars, the
Fabry-Perot resonance is expected to be important only in
relatively shallow waters since the reflectivity (6a) of Bragg
mirrors decreases with increasing kyh. As the water depth
decreases and due to refraction, wave rays asymptotically
become parallel to each other. Hence the effect of the
spreading angle or multidirectionality of waves is usually
neglected in such analyses (e.g., Ref. [14]) and is not
pursued here. Nevertheless, we would like to comment that
effects of multidirectional waves can be easily taken into
account invoking the same formulation presented here and
by considering an effective wavelength, which is the surface
wavelength component perpendicular to the corrugation crests
[27]. Real seabeds, particularly near shorelines, may also have
a mean slope [9]. In such a case and if the slope is mild,
water-wave trapping is optimized by considering a slowly
varying ripple wavelength, i.e., k, = k;(ex) (¢ < 1), such that
wp = kpg tanh k,h remains constant everywhere [27,28].

The Fabry-Perot resonance of water waves is a leading
order phenomenon. Therefore, even if the seabed undulations,
whether engineered or natural, are not perfectly sinusoidal
(due to, e.g., erosion over time or biofouling), a strong
amplification or damping is achieved as long as the dominant
Fourier component of the seabed satisfies the resonance
condition [9,29,30]. In such cases, the results presented here
can therefore be expected to obtain with quantitative changes
proportional to the amplitudes of the nondominant secondary
topographic modes [31,32]. Clearly a purely random topog-
raphy does not lead to any resonance but rather result in
localized waves damped because of wave energy spreading
in all spatial directions [33]. For arbitrary corrugation shapes,
large ripple amplitudes, and away from the Bragg frequency,
ie., | — wp|/wp ~ O(1), the use of Floquet theory [34,35]
or numerical simulations of higher-order equations [36,37]
becomes necessary to carefully asses the degradation of the
quality of the resonator [32,38].

Viscous dissipation in water, except for very short waves
such as capillary-gravity waves, is generally confined near
the seabed. Due to the no-slip boundary condition at the
bottom, a viscous boundary layer forms, allowing for sediment
transport while dissipating wave energy. Bottom friction
affects both the wave amplitude and phase [39]. Following
earlier studies on Bragg scattering [40], we can infer that the
water viscosity v &~ 107°m?s~! within a laminar boundary
layer on a flat seabed results in a phase shift accumulation and
amplitude attenuation rate given by exp[—x(1 —i)o/(2C,)]
where o = gk?/v/(2w)/(w cosh® kh). For the parameters of
the numerical simulation presented in Fig. 6 and T = 7s,
we find that o ~ 6.61073 s~!, which corresponds to a phase
shift accumulation and wave attenuation rate of 0.03% per
wavelength. Implementing these viscous effects into our
formulation we find that the field enhancement obtained in
Fig. 6 is decreased by 0.6% for [ = lf and by 3.7% for
[ = 18,. Viscosity can therefore be safely neglected for a rigid
smooth seabed and a resonator with an interior region of length,
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e.g., | <If, since the wave field remains strongly enhanced.
Indeed, for such small interior regions, the viscous phase shift
is much smaller than the full-width half maximum of the field
enhancement spectrum peaks. A more thorough analysis of
bottom friction may, however, be necessary for erodible beds
made of e.g. sand grains since these typically exhibit stronger,
though still small, viscous effects [11,15].

While outside the scope of the present work, we finally
note that nonlinear effects, which have been shown to produce
soliton-like structures over seabed corrugations [41], could
become of significance for the Fabry-Perot resonance of finite-
amplitude water waves as they would most certainly limit the
maximum achievable field enhancement.
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APPENDIX: DERIVATION OF THE FABRY-PEROT
COEFFICIENTS

Here we derive the Fabry-Perot reflection, transmission,
and field enhancement coefficients as given in Egs. (9) and
(12). Consider a pair of water Bragg reflectors with seafloor
corrugations given by Eq. (8). Mei [23] showed that the
equations governing the evolution of the wave envelopes .4 and
B [cf. Eq. (4)] over each patch of ripples at the steady-state read

9A;

iQA; + Comrt = —Q°e" B;, (Ala)
: < .
B, L
iQB; — cga—f =Q%e A, (Alb)
X

in the vicinity of the Bragg frequency, i.e., ® = wp + Q ~
wp = w(ky/2), with Q¢ = (wk,d)/(4 sinh 2kh) the cutoff fre-
quency, and where j =1 or 2 depending on whether we
consider the envelope variations over region 1 or 2 (see Fig. 1).
We recall that k;, and 0, , are the wave number and phases of
the seabed corrugations, C, is the group velocity, and €2 is the
detuning parameter. The time variations of the wave envelopes
being sinusoidal at the steady state, we expand them out of
the envelope solution by rewriting A;(x,t) and B;(x,t) as
Aj(x)e* and B;(x)e'*¥. The general solution to Eqgs. (Al)
over either one of the two patches (i.e., j = 1 or 2) can be
written as (e.g., Ref. [17])

Aj(x) = Aj(x})P;(x), (A2a)

Bi(x)=A; (X;)Q.j(x), (A2b)
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where

P;(x) = [igCq coshgy; — Qsinhgqy;

+ie'% Q°U; sinhqy;1/Z;, (A3a)
Q;(x) = {ligCq coshqy; + Q2sinhqy; U,
+iQ°e "% sinh qy;}/Z;, (A3b)

with y; = x¢ — x and

Bj(x;)

Aj(xj)’

Z; =iqCqcoshqL; — QsinhgL; +ie" QU sinhgL ;.

qCg = /(P -2, U; =

The envelope solution (A3) provides the reflection and
transmission ratios Q;(x) and P;(x) for the wave amplitude
over the upstream and downstream patch (j = 1,2). In the
middle region “m”, the envelope amplitudes are constants,
and therefore free-surface continuity requires

Uy = Bl(xi) _ BZ(xé) 2k — RBe2H,
A(x])  Ax(x)

Assuming U, = 0, i.e., waves come only from the upstream
side, and enforcing the condition (A4), we then obtain the
Fabry-Perot reflection and transmission coefficients R¥? =

Bi(x)/Ai(x}) and THP = Ay(x§)/ Ai(x}) as

(A4)

|Rf§ | + 7—\)53621'91 efzikleioll

FP _ _io
R =e 1+ RERE 2021k ° (AS2)
B|? B|?
TFP _ oikl i 4i6: \/1 B |R1 | \/l B |R2 | (ASb)
- 1 +R{3Rge2iﬁle—2ikl ’
where we used the fact that [cf. Eq. (6)]
Rf =77j(x5), when U; =0, (A6)

along witha; = arg(Rj.3 ). From Eq. (A5) and the definition of

the round trip phase shift y (10), we then obtain 777 = |TFP|
and RT? = |RFP| as given in Eq. (9).
The field enhancement, defined as

_AG) ]+ [

- : (A7)
|A(x)]|
and given in Eq. (12), is also readily obtained considering that
LA B
G A
i BT A A
[AGe) [ A [AGS)]
TFP
= (1+R§)F. (AB)
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