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Planar Diffraction Analysis of Homogeneous and
Longitudinally Inhomogeneous Gratings Based on
Legendre Expansion of Electromagnetic Fields

Maysamreza Chamanzar, Khashayar Mehrany, and Bizhan Rashidian

Abstract—Planar grating diffraction analysis based on Le-
gendre expansion of electromagnetic fields is reported. In contrast
to conventional RCWA in which the solution is obtained using state
variables representation of the coupled wave amplitudes; here,
the solution is expanded in terms of Legendre polynomials. This
approach, without facing the problem of numerical instability and
inevitable round off errors, yields well-behaved algebraic equa-
tions for deriving diffraction efficiencies, and can be employed
for analysis of different types of gratings. Thanks to the recursive
properties of Legendre polynomials, for longitudinally inhomoge-
neous gratings, wherein differential equations with non-constant
coefficients are encountered, it can also be used to analyze the
whole structure at one stroke. Although this is the only case for
which the presented approach is efficient from both aspects of
stability and computation load, the presented approach is applied
to different test cases, and justified by comparison of the results to
those obtained using previously reported methods. The method is
general, and can handle many different cases like thick gratings,
non-Bragg incidence, and cases in which higher diffracted orders
or evanescent orders corresponding to real eigenvalues, have to be
included in the solution of the Maxwell’s equations. In deriving
the formulation, a rigorous approach is followed.

Index Terms—Electromagnetic diffraction by periodic struc-
tures, gratings, inhomogeneous gratings, Legendre polynomials.

1. INTRODUCTION

NALYSIS of wave propagation in periodic structures,

due to its wide range of applications, is faced in various
cases in telecommunications, electromagnetics, optics, and
acoustics [1]. Consequently, it is essential to have an exact,
efficient, and stable way to find reflection and transmission
coefficients, diffraction efficiencies, and field profiles inside
and outside of the grating. The electromagnetic theory of such
structures has been extensively studied since Rayleigh’s time,
and different approaches such as rigorous coupled wave [1],
[2], coupled mode [3], two wave methods [4], and Raman-Nath
approach [5], have been reported for grating analysis. Methods
for obtaining rigorous solutions can be categorized in two broad
classes: integral methods and differential methods [6]. Whereas
integral methods are best suited for analyzing gratings of contin-
uous profiles, differential methods are more appropriate for the
analysis of discrete-level profiles. Numerical implementation
of differential methods tends to be less complicated than that
of integral methods [7], due to difficulties such as logarithmic
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singularities that may occur in solving the integral equation
[8], [9]. Of many differential methods proposed for the analysis
of volume diffraction gratings, rigorous coupled wave anal-
ysis, or RCWA, is the most precise, general, and widely used
method [7], [10], [11]. It has been successfully applied to the
analysis of two-dimensional and three-dimensional isotropic
and anisotropic structures [12]-[15], as well as multiple grating
structures [17], [18]. However, the presence of evanescent orders
corresponding to real eigenvalues appearing in the solution of
Maxwell’s equations usually leads to numerical difficulties in
applying RCWA method. This problem is also encountered
in applying other conventional rigorous approaches which are
based on modal expansion, where Helmholtz equation leads to a
linear eigenvalue problem. This is due to the fact that evanescent
orders result in the simultaneous appearance of extremely large
and extremely small coefficients in the equations obtained by
imposing the boundary conditions, and consequently cause nu-
merical overflow and ill-conditioned matrices in the calculations
[19]. Therefore, a robust method capable of handling evanescent
orders is mandatory, especially in cases such as multiple grating
structures or metallic corrugated gratings, where evanescent
or complex diffracted orders cannot always be discarded. In
some approximate methods based on Rayleigh hypothesis [20],
the solution is divergent, and specific methods like the point
matching technique are employed. The observed divergence of
the solution, exacerbated by increasing the number of terms in
electromagnetic field expansion in the grating region, is associ-
ated with the validity of the hypothesis and many techniques are
devised to handle such an inherent problem [21]. However, such
mentioned numerical instabilities are not inherent in the reflec-
tion-transmission problem solved by applying rigorous methods
like RCWA. Several other techniques have been proposed and
have been successfully implemented to surpass this problem, in-
cluding enhanced transmittance matrix approach [10], R-matrix
approach [22], [23], scattering matrix approach [24]—-[26], and
impedance formalism [27]. Morf has also reported a new mathe-
matical method for the special case of lamellar gratings in [28].
That method is based on the expansion of the eigenfunctions in
terms of a set of polynomial basis functions. Even though the
Gibbs phenomenon was avoided in following that approach, the
method still needed a subtle and delicate handling of propagating
electromagnetic fields where numerical instabilities similar to
those usually encountered in applying transfer matrix methods
were expected [28], [29].

In this paper, a similar yet fundamentally different approach
is proposed. The electromagnetic field expressions inside the

0018-926X/$20.00 © 2006 IEEE



CHAMANZAR et al.: PLANAR DIFFRACTION ANALY SIS OF HOMOGENEOUS AND INHOMOGENEOUS GRATINGS

grating which are the solutions of Helmholtz equation are
expanded in terms of orthogonal Legendre polynomials. Then
the solution is examined in a Hilbert space spanned by the
polynomials. The method yields numerically stable results
[19] and compared with other approaches based on modal
method by Fourier expansion (MMFE), could enjoy a better
convergence rate. The cost of the strong stability and generality
of the proposed approach is its larger computation load in
comparison to other approaches [10], [21]-[25] already devised
for stabilizing conventional methods. These points are further
elucidated in Section III. Therefore, the presented method can
be best employed for analysis of gratings with inhomogeneous
longitudinal permittivity profiles, where the computation load
is cost-effective. Some examples on such structures are given
in Section IV.

This paper is arranged as follows: polynomial expansion for-
mulation of electromagnetic fields for the general case of planar
slanted gratings is discussed in Section II. In Section III, nu-
merical stability of the proposed method and its computational
burden are investigated, wherein the results obtained by ap-
plying polynomial expansion method are compared to those
obtained by applying the conventional RCWA modal expan-
sion approach. Also, in this section convergence rate of the pre-
sented approach is studied in regard to the retained number of
space harmonics and number of polynomial terms kept for ex-
panding each space harmonic. Further numerical examples in-
cluding frequency selective structures and inhomogeneous grat-
ings, are investigated in Section IV. Finally, conclusions are
made in Section V.

II. POLYNOMIAL EXPANSION ANALYSIS: FORMULATION
AND DISCUSSION

In this section, the electromagnetic field expressions inside
the grating are expanded in terms of orthogonal Legendre
polynomials [30], [31]. This novel electromagnetic field expres-
sion, in accordance with Floquet theorem, is then substituted
in Helmholtz equation; appropriate boundary conditions are
applied, and finally the unknown expansion coefficients and
diffraction efficiencies are found. It should be noticed that ex-
pansion of the electromagnetic field expressions in a complete
space spanned by orthogonal polynomial basis functions is a
nonharmonic expansion [31], which has some advantages. First,
the equations become algebraic rather than transcendental;
being easier to manipulate. Second, this approach works prop-
erly even in those special cases in which other methods usually
fail to render numerically stable results. Third, it can easily
handle longitudinally inhomogeneous gratings, where the
overall structure is analyzed in one stroke, eliminating the need
for breaking the structure into many homogeneous sublayers.

A general form of a slanted grating is shown in Fig. 1. Here,
the permittivity is assumed to be a general periodic function
of «’

e(x' + Ag) = e(a') (1)

where Ag is the grating period. Inside the grating, the
Helmholtz equation can be easily derived as [32]

VZEy(z'7 2+ k26($/)Ey(:L’I, Z)=0 2)
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Fig. 1. Planar Slanted Grating.

for TE polarization, where k =
wavevector, and as

(27)/(A) is the free space

VU, (2, 2") + K2 N2 (2" ) Uy (2',2') = 0 3)

for TM polarization, where Uya’,2" = (Hyz',2")/(nz’),
E*N%(z') = k?n® + (n”/n)— (2n'?)/(n?), and n is the
refractive index, n’ and n’ represent the first and the second
derivative of the refractive index profile, respectively. For the
case of lamellar gratings, (3) is not applicable for analysis of
TM polarization and a different scheme [15], [16] need to be
employed.

The relation between (z, z) coordinates and (', 2’) coordi-
nates is simply a clockwise rotation of coordinates expressed by

{x’ = wsin(¢) + z cos(g)

2 = —xzcos(¢p) + zsin(g). @)

Since ¢ is a periodic function of z’, Floquet theorem gives the
general form of the solution of (2) for the TE case as [1]

~+o0 =
Ey(z,2) = Z Si(z)e—](Kz—ng). T (5)
where I?g = Ko,z + Ks.% is the wavevector of the re-

fracted wave if region II were not periodic and were re-

placed by a medium of average permittivity, and ITG) =
(27)/(Aq)[sin(¢)& + cos(¢)z] is the grating vector. The index
¢ running from —oo to 400 denotes the sth space harmonic
corresponding to the sth diffracted order in regions I and III.
Numerically, expansion of the transverse electric field in terms
of infinite number of space harmonics (5) should be inevitably
truncated to N number of terms. For dielectric gratings, all the
space harmonics corresponding to propagating Floquet orders
should be retained in the preceding expansion, where only a
few of those terms corresponding to evanescent Floquet orders
are needed to be included. In contrast, more space harmonics
are needed to be kept for absorption gratings. Notwithstanding,
this rule of thumb is seriously criticized in following sections.

The rest of this section is divided into three subsections;
firstly, the expansion of electromagnetic fields inside the
grating in terms of the Legendre polynomials is discussed.
Secondly, this expansion is further investigated for the case
of longitudinally inhomogeneous gratings, where the key
properties of Legendre polynomials suitable for analyzing
inhomogeneous gratings are introduced. Finally, applying the
appropriate boundary conditions is commonly discussed for
both homogeneous and inhomogeneous gratings.
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A. Electromagnetic Field Expansion Inside Longitudinally
Homogeneous Gratings

For the case of longitudinally homogeneous gratings, € is a
periodic function and it can be expanded in terms of its Fourier
series as

. -
c@,z) = peltbaT (©)
h

- —
where &, = 2/Ag fOAG e(z')e=3"KG T 4y’ is the Fourier
component of the grating permittivity.
Substituting this form of the solution, i.e., (5) into the
Helmholtz equation (2) and doing algebraic manipulations, one
gets rigorous coupled-wave equations [1]

d2S;(z) ds;

— 2[Ky. — 1K, 2
22 IR, — G]dz
i

[li(m’ — ) K& — K3) Si(2) + k2 cipSp(z) =0. (7)

d
+

Here, p = i — h,m’ = (2K3)/(Kg) cos(f — ¢), and the re-
fracted angle 6 is defined as sin(#) = (K5,)/(K2). It should be
noticed that m’ becomes an integer whenever the m’th Bragg
condition is satisfied.

In the case of longitudinally homogeneous gratings, (7) be-
comes a set of constant coefficient differential equations rep-
resenting a linear shift invariant system which can be solved
by following the standard state variables method. That is the
solution can be expanded in terms of the eigenvectors of the
coefficient matrix, whose dimension is 2N x 2N, where N is
the total number of retained space harmonics, i.e., S; (z)s. It
should be noted that the exact solution is obtained by keeping
infinite number of space harmonics; however, the truncation to
N space harmonics is inevitable. Here, instead of following the
standard state variables method, S; (z) are expanded in terms
of Legendre polynomials

= ; 22 —d
m=0

where P,, (&) terms are the normalized Legendre polynomials,
qfn s are the expansion coefficients to be determined later, and in
accordance with Fig. 1 and Fig. 4, d stands for the grating thick-
ness. It should be noticed that the vector space spanned by Le-
gendre polynomials is a complete one [31], and each S;(z) can
be expanded in terms of them. However, in practice the expan-
sion of (8) is truncated to a finite number of polynomial terms
and acceptable number of polynomial terms depends on the
amount of energy coupled to each polynomial, and the required
level of accuracy. Although, truncating the polynomial expan-
sion given in (8) is inevitable, the introduced error is shown to
be negligible. It should be also noticed that the interdependency
of N, determining the accuracy of each space harmonic inside
the grating, and number of diffraction orders outside the grating
are now faded by introducing polynomial expansion bringing a
new degree of freedom M;, where the first M; terms of the poly-
nomial expansion (8) are retained and higher order terms are ne-
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glected. The truncated polynomial expansion is then inserted in
(7) and the corresponding truncation error is minimized by pro-
jecting the resultant equation on the polynomial basis functions.
Consequently, the following equation is obtained:

Tfn —jd[KQZ — ’LKGZ]gm + (§> [z(m’ — z)Kg; — K22] (/e

d 2
+<5> By eipgh =0 (9)
p

where g¢, = (2m + 1) 2,0, giand i, = (2m +1)/(2)
l+m odd
M

imize (L+m+1)(I —m)q} are the expansion coeffi-
t=1,2,3,...

cients of the first and the second derivatives in terms of ¢’ s,
respectively.

The gi,s are unknown coefficients of the polynomial basis
functions for each space harmonic, that is for each value of <,
there are M; 4+ 1 number of unknown coefficients. It should be
noticed that (9) results in a set of M; — 1 equations with M; + 1
unknowns for each space harmonic. Therefore, one needs two
further equations, which can be obtained by applying boundary
conditions at z = 0 and z = d [19].

B. Electromagnetic Field Expansion Inside Longitudinally
Inhomogeneous Gratings

Now that the set of coupled wave equations, i.e., (7) are solved
in the complete space spanned by Legendre polynomials, shift
variant types of (7) can also be easily solved; this means longi-
tudinally inhomogeneous grating for which the Fourier compo-
nents of the permittivity profile are arbitrary functions of z can
be analyzed. In the case of longitudinally inhomogeneous grat-
ings the fringes are directed along the z axis, i.e., ¢ = 90°, and
the Fourier expansion in (6) and (19) are carried out along the x
axis where the coefficients are left as functions of z (or &), i.e.

e(z,2) = Zéh(z)ethG'? (10)
h

> —
where &,,(2) = (2)/(Ag) Ji* e(w)e=" K6 T dy is the 2-de-
pendent Fourier coefficient of the grating permittivity. By sub-
stituting this type of permittivity expansion in (7), the resulting
equation governing the electromagnetic fields expansion coef-
ficients inside the grating, i.e., (9), becomes shift variant. This
equation reads as

T — Jd[K2. —iKaslgr,
d 2 . / . 2 2 7
+ 3 [z(m —Z)KG—KQ]qm
J\ 2
+ (5) k2zgi—p(z)qu =
P

Recently, we have proposed a method for analyzing one-dimen-
sional longitudinally inhomogeneous optical structures [33], in
which we have employed a recursive property of the Legendre
polynomials. Here, in the same manner, this recursive property
of Legendre polynomials is used to absorb any z-dependent co-

(11
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efficient of (7) in the polynomial expansion of the space har-
monic amplitudes. This proclaimed recursive property is given
as [34]

m+1
EPn(8) = mpmﬂ(f) + mpm—l(f)-

The above feature indicates that any power of ¢ can be absorbed
in Legendre polynomials by successively using of (12). It can be
readily shown that

(12)

+oo +o00
D @ Pun(€) = D XmPu(€) (13-a)
m=0 m=0
where
m m+ 1
- _q._ - - . 13-
Xm 2m_1qm 1+2m+3qm+1 ( 3b)

Having arranged (13-b) in a matrix format, one obtains

[Xm] = [X][Tm]- (14)

Therefore, once the matrix [x] is generated, any power of £ can
be easily absorbed in the expansion given in (13), by multiplying
the corresponding power of [x] to the vector [g,,].

The z-dependent Fourier coefficients of the permittivity pro-
file in (11) being any arbitrary function of z can be interpolated
by polynomials in the interval 0 < £ < 1, i.e.

en(€) 2 ag+ o+ ol + az® + -+ an, &

where N; is appropriately chosen so that (15) becomes an ac-
ceptable approximation. By inserting (15) in (11), any =z depen-
dence of the permittivity can be absorbed in the Legendre poly-
nomial expansion of S; (z). As far as the resulting equation is
still a set of algebraic constant coefficient equations, the rest of
the procedure is just the same as the homogeneous case.

Therefore any inhomogeneous structure along the z-direc-
tion can be holistically analyzed by using the proposed method,
where the need for breaking the structure into piecewise homo-
geneous sublayers is eliminated. This way, intensive computa-
tion load of multilayer structures analysis is leapfrogged. Some
examples on gratings of inhomogeneous longitudinal permit-
tivity profiles are given in subsequent sections.

15)

C. Boundary Conditions

Appropriate boundary conditions can be applied by using the
electromagnetic field expressions in regions I and III given in
(16) and (17), respectively [1]. They are expanded in terms of
the plane waves corresponding to diffracted orders

= 400 =
By =aye 50T pa, ST Re KT e

i=—00

— = K_) -
E3 =i, Z Tie 3i(17—d2)

1=—00

7)

Here, R; and T; are reflection and transmission coefficients of
each diffracted order, respectively. In contrast to the electromag-
netic fields inside the grating which are expanded in terms of in-
finite set of space harmonics, i.e., S;(z)s, electromagnetic fields
in regions I and III are expanded in terms of plane waves [35].
Applying the continuity condition of tangential electromag-
netic fields by using (5), (8), (16), and (17), eliminating R; and
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T; coefficients, and doing some algebraic manipulations result
in

M,
- m i +1 . .
Z (_1) Qm [% + .](Kliz + K2z - ZI(Grz):|

= 2jK1.60, (18)
M;

S~ i [m(m+1 . .

S, {% T (K — Kos + zKGZ)} = 0.19)
m=0

Considering the fact that each diffracted order outside the
grating must be phase matched to its corresponding space
harmonic inside the grating at each boundary, one finds

Kiiw = K1, — iKgsin(¢) (20a)
Kgm = ng - LKG sm(qﬁ) (20b)
KQm = Klz = K()Tll Sin(9'). (200)

Now either of (9) or (11), (18), and (19) form a set of M; +1
equations, their solution resulting in the values of ¢, s. Con-
sequently, R;, T;, and the corresponding diffraction efficiencies
can be determined

Kliz
DEy; = Re| — | R; R} 21
1i e (Klz > ; (21)
Ks;.
DEs; = Re ( 3 > T,T>. 22)
K. )

For lossless dielectric gratings, as a result of energy conserva-
tion, one finds

> DEy; + DEs; = 1. (23)
For the case of TM polarization, everything is similar to that of
TE polarization since (3) resembles to (2). The only difference
isin N2 (2’) which is not simply ¢ (z’). However, it is a periodic
function whose Fourier expansion can be used instead

N*(z,z) = Zane

n

(24)

with a,, being the nth Fourier component of N2 (/).

Afterward, diffraction efficiencies can be computed by fol-
lowing the same approach already described for TE polarized
wave incidence, just by replacing F, with U, defined as U, =
(H,)/(n).

The amount of coupling between different space harmonics
is related to the harmonic content of € (z) and N (z'). For a
sinusoidal permittivity profile, there is more coupling between
TM polarized space harmonics than in the TE case. This is due
to the fact that the harmonic content of N2 (') is richer than
that of ¢ ('), and the spatial variation of TM polarized waves
is faster than that of TE polarized waves.

III. NUMERICAL STABILITY AND CONVERGENCE PROPERTIES

Numerical instability is one of the limitations in applying
RCWA method [15]. Such numerical difficulties are exacerbated
by the presence of a large number of evanescent growing and de-
caying fields and/or increasing the grating layer thickness both
of them deteriorating the condition number of matrices involved
in applying standard state variable methods.
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Here, by expanding the space harmonics’ amplitudes in
terms of orthogonal Legendre polynomial bases, the calculation
of the eigensolutions is surpassed. In other words, the process
of finding eigensolutions of electromagnetic fields inside the
grating and the process of applying boundary conditions are
combined in finding expansion coefficients. The computation
bottlenecks lie in the coefficient matrix assembling and solving
the final algebraic system of equations to find expansion co-
efficients, i.e., ¢’ s. The assembling process can be highly
accelerated by taking into account that many parts of the coef-
ficient matrix are the same especially when identical M;’s are
retained for each space harmonic S;(z). Also, the coefficient
matrix mostly consists of blocks located on diagonal lines
yielding a well-behaved sparse matrix. Consequently, main
computational burden lies in determining the coefficients ¢¢,s,
i.e., the inversion process of the coefficient matrix.

In order to demonstrate the numerical stability of the pro-
posed method, a reflection dielectric diffraction grating is an-
alyzed as the first numerical example. The values of the grating
parameters, referenced to Fig. 1, are given as: grating slant angle
¢ = 150°, the angle of incidence satisfying the first Bragg con-
dition " = 20°, the grating permittivity in region II given by
e (') = 2.25(1 4 0.33cos(Kgz')), and dielectric permittiv-
ities of regions I and IIl, e; = e = 2.25, and the incident
wavelength A = 1.9284A . In Fig. 2, diffraction efficiencies are
plotted versus the normalized thickness (d/Ag), by using con-
ventional RCWA (solid line), and polynomial expansion method
proposed in this paper (dashed line). Both TE and TM polar-
izations are analyzed and an excellent consistency with those
results obtained by Gaylord et al. [1] is observed. However, it
should be noticed that conventional RCWA becomes unstable
for grating thicknesses larger than 5A . The results of the pro-
posed method in Fig. 2 are obtained by keeping 8 polynomial
terms for TE and 12 polynomial terms for TM polarization.

As another example, a transmission grating is considered with
the following parameters: ¢ = 120°, 6’ = 42° (the angle of in-
cidence satisfying the first Bragg condition), e(z’) = 2.25(1 +
0.12 cos(Kga')) in region I, e = e = 2.25, and the in-
cident wavelength A = 0.6237A¢. In Fig. 3, diffraction effi-
ciencies corresponding to the zeroth and the first transmitted
orders are plotted versus normalized thickness (d/A¢) by em-
ploying RCWA (solid line), and polynomial expansion method
proposed in this paper (dashed line). Again, these results show
good agreement with those already reported by Gaylord et al.
[1]. The proposed results are obtained by keeping 7 polynomial
terms for TE and 8 polynomial terms for TM polarization.

It should be noticed that conventional RCWA [1] analysis
fails to handle more than four Floquet orders (N > 4) in both
of these examples. In contrast, polynomial expansion method
behaves well enough in handling such problems. It is obvious
that increasing the number of retained spatial orders improves
the achieved accuracy of the truncated expansion of electro-
magnetic fields given by (5). As stated earlier, it should be no-
ticed that there exist other approaches devised for stabilizing
RCWA [10], [22], [24]-[27], which, so long as homogeneous
gratings are considered, find to be computationally more cost-
effective than the proposed method. It should be noticed that the
results of Figs. 2 and 3 can be obtained by using such methods
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Fig. 2. Diffraction efficiencies of a reflection grating (¢ = 150°,e; =
errr = 2.25,er,(x’) = 2.25(1 4 0.33cos(Kga’)) and ' = 20°) versus
d/Ac computed by polynomial expansion (dashed line) with N = 7 and
M = 8 for TE and M = 12 for TM and RCWA method (solid line) with
N = 5.
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Fig. 3. Diffraction efficiency of a transmission grating (¢ = 120°,e; =
errr = 2.25,er,(a’) = 2.25(1 4 0.12cos(Ka’)) and ' = 42°) versus
d/Ag, computed by polynomial expansion (dashed line) with N = 7 and

M = 7 for TE and M = 8 for TM polarization and RCWA method (solid
line) with N = 5.

without facing the depicted numerical stabilities. Such stabi-
lized schemes are later used to obtain the data plotted in Fig. 5,
where 120 harmonics are retained.

Though the observed numerical instability usually encoun-
tered in dealing with deep and/or thick gratings has been
successfully surpassed by introducing a couple of modified
methods [10], [22], [24]-[27], slow convergence rate of ap-
plying coupled wave methods or any other modal method
by Fourier expansion approach is still left to overcome [11].
In following RCWA or any other modal method by Fourier
expansion, both the permittivity and the electromagnetic fields
inside the grating are expanded in Fourier series, whereas
infinite Fourier expansions are truncated by keeping N terms.
It should be noticed that each complete solution of electromag-
netic fields in the grating region calls for an infinite number
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Fig. 4. Surface relief grating with rectangular grooves.
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Fig.5. Relative error in the first forward diffracted order DE3; versus the total
number of space harmonics (IV'), for the RCWA method (triangles) and the poly-
nomial method (circles) for a lamellar grating with f = 0.5,s; = €777 =
1.5, €groove = 1.5, ridge = 8,6’ = 0°, and TM polarization.

of terms in Fourier expansion; therefore, none of the truncated
modes can exactly satisfy Maxwell’s equations and appropriate
boundary conditions. However, increasing the truncation order
N makes the permittivity distribution, the eigenvalues and the
eigenvectors of the modal fields closer to their exact values.
Increasing the truncation order N, not only makes each space
harmonic involved in the electromagnetic field expansion
inside the grating more precise, but also increases the number
of them. This conspicuously shows how strongly twisted are
the convergence rate of the permittivity expansion and that of
the electromagnetic field expansion and the number of required
space harmonics. In contrast, such a strong dependency is
now abated by introducing a new factor M;. The proposed
method can be categorized as a non-modal method by Fourier
expansion, where each one of diffraction efficiencies, i.e., the
power of each scattered harmonic denoted by D E5;(N, M) for
transmitted orders in region III and DE17;(N , M ) for reflected
orders in region I, is a function of both NV and M. Here, M is
a vector containing N values of M;, the number of polynomial
basis functions. The subscript 7 denotes the index of diffracted
Floquet orders. Consequently, the convergence rate can be
studied from two aspects, the convergence rate as a function of
N and the convergence rate as a function of M. In this section,
these two different convergence rates are studied and it has been
shown that polynomial expansion could partially ameliorate the
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Fig. 6. Relative error in the first forward diffracted order DE3; versus the
number of polynomial basis functions (1) for N = 81 indicated in Fig. 5.
Parameters of the grating are the same as those used in Fig. 5.

inevitable truncation error of space harmonics. As a numerical
example for studying the convergence rate, a lamellar dielectric
grating is chosen with the following parameters:

In accordance to Fig. 4, the duty cycle of the binary grating
(f) is 0.5, dielectric permittivity in region I and region III
(er,emr) is 1.5, dielectric permittivity of grooves (€groove) 1S
1.5 and that of ridge is (eyiage) 8, incident angle (#’) is 0°
(normal incidence), and grating periodicity (A¢) being equal to
the wavelength of the incoming light in free space (o) is equal
to the grating thickness and all are normalized to 1, the incident
polarization is TM. This structure has three forward and three
backward diffracted orders. Most of the incident power is
forward transmitted. The convergence of both the presented
method and that of the RCWA is demonstrated in Fig. 5 by
plotting the relative error for the first forward diffracted order
defined in (21) and (22) versus N-the number of retained space
harmonics

|DE31(N) — DE3; (201)]
= 100 25
DE5(201) X @5)
for RCWA and
DE3(201)

for polynomial expansion method.

In the definition of relative error, the exact diffraction effi-
ciency is assumed to be that of N = 201. For the polynomial
expansion method, M is fixed at 20, i.e., a uniform distribution
is assumed for all M; such that each M; is 20. It should be no-
ticed that the converged results, as Fig. 5 indicates, are obtained
beyond N = 71 terms, whereas only three propagating orders
exist. This remarkably denounces the rule of thumb according to
which retaining only a few number of cutoff modes (evanescent
orders) guarantees the convergence of the solution. Moreover,
the numerical results obtained by following polynomial method
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TABLE I
COMPARISON OF THE DIFFRACTION EFFICIENCIES AND THE RELATIVE ERROR OBTAINED BY USING THE POLYNOMIAL EXPANSION METHOD AND RCWA AT
POINT A OF FIG. 5

Polynomial Method (N=81, M=20) RCWA (N=81) RCWA (N=201)
DE3g 0.269012 0.271026 0.265298
DE;, 0.297091 0.295604 0.299104
Errorso 1.40% 2.16%
Errors; 0.67% 1.1%
converge faster than those obtained by applying RCWA. All the Ir
same, so long as computational burden is considered, the ob-
served effect cannot outstrip stabilized RCWA schemes already
devised for analysis of homogeneous gratings. This point is fur- 0.8
ther clarified in next section, where computation time of homo- | &4 P Xl
geneous and longitudinally inhomogeneous grating profiles are
compared. s 0.6
In Fig. 6, relative error defined by (21) for the first forward E
diffracted order is plotted versus the number of polynomial 2
terms, namely basis functions, wherein the presented results 041
correspond to the point A indicated in Fig. 5, i.e., N is fixed m:+0’l;
at N = 81 and each space harmonic amplitude is expanded ozl :
based on M Legendre polynomials, i.e., M; = M. This
figure shows how the solution uniformly converges beyond Y e,
the point M = 20, where the error becomes negligible. As 0 s O e Pt LS ‘
5 51 52 53 54 55 56 57 58 59 6 6.l

a matter of fact, keeping more than 17 orthogonal Legendre
basis polynomials pins the error beneath the value of 1%. How-
ever, it should be noticed that expanding each space harmonic
amplitude in terms of M; = M terms is not necessarily the
optimum choice, where different space harmonic amplitudes
each of them enclosing different harmonic contents can be
satisfactorily expanded by retaining different values of M,;.
Therefore, finding the optimum values of M; can potentially
reduce and simplify the pertinent computation burden.

Diffraction efficiency DE3; and DE3y computed by RCWA
[15] having N = 81 space harmonics, and polynomial expan-
sion method having N = 81, and M = 20, are compared with
the results obtained by RCWA having N = 201 [15] terms
yielding the least numerical error and the results are summa-
rized in Table L.

IV. FURTHER EXAMPLES

In this section, some examples of homogeneous and longitu-
dinally inhomogeneous gratings are given.

The frequency selective behavior of dielectric and metallic
periodic structures has found many applications in electromag-
netics. They are used as filters, polarizers, radomes and subre-
flectors in patch antennas [36], [37]. Here, a lamellar dielectric
frequency selective surface (DFSS) is analyzed. In accordance
with Fig. 4, the parameters are as follows:

The duty cycle of the binary grating (f) is 0.5, region I and
region III are free space (er,err = 1), relative dielectric per-
mittivity of grooves (gro0ve) is 1.44 and that of ridge is (ridge )
2.56, incident angle (") is 45°, grating periodicity (A ) is nor-
malized to 1, and the grating thickness is 1.713A¢. The incident
polarization is TE. Reflectance is plotted in Fig. 7 versus nor-
malized frequency K d (solid line), where K is the free space
wavenumber. Total reflection occurs at two resonant normalized
frequencies of 5.32 and 5.83. The result obtained by N = 9 and

Kod

Fig. 7. Reflectance versus the normalized frequency for the dielectric fre-
quency selective grating: f = 0.5,67 = €777 = 1, €groove = 1.44, Eriage =
2.56(1 + mz/d),d = 1.713As, and 8’ = 45°. Solid lines: Homogeneous
case (m = 0), Dashed lines: m = —0.1, Dotted lines: m = +0.1.

M = 8, perfectly agrees with that presented in [38] by Bertoni
et al. and [36] by Coves et al.

It has been reported that the spectral response of such fre-
quency selective structures can be altered by using inhomoge-
neous dielectrics in the structure of a metallic grating [39]. Inho-
mogeneous gratings are also investigated in [40] by Forslund e#
al., where a wave-splitting approach is used for analysis. Here, a
specific example of such a structure having an inhomogeneous
ridge permittivity of linear variation from z = 0 to z = d:
Eridge = 2.56(1+m(z/d)) is analyzed, where the capability of
tuning the reflection spectrum by altering m is clearly demon-
strated. Other parameters are the same as the previous example.
In Fig. 7 the reflectance is plotted for m = —0.1 (dashed line)
and m = +0.1 (dotted line). It can be seen that the location of
the resonant frequencies is moved towards higher frequencies
for positive m and towards lower frequencies for negative m.

As already discussed in Section II-B, each Fourier component
of the permittivity profile is a function of z, and the set of cou-
pled wave (7) becomes a shift variant one, for which a general
closed form solution is not always available. However, the set of
shift variant coupled wave (7) can be solved by breaking the in-
homogeneous structure into approximating homogeneous sub-
layers. Here, by using a recursive property of Legendre polyno-
mials introduced in Section II-B. B, the z dependent coefficients
can be absorbed in the Legendre expansion of space harmonics.
This way the structure is holistically analyzed and computation-
ally intensive multilayer analysis is not needed anymore. The
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Fig. 8. Permittivity profile of a two-dimensional grating.

computation time of the overall response with 0.001 normalized
frequency steps using a Pentium I'V 2.4 GHz personal computer
is 372.06 s for the homogeneous case, i.e., m = 0, and 510.61
s for the inhomogeneous cases of m = —0.1 and m = 0.1.
It can be seen that the extra computational burden demanded
for the analysis of inhomogeneity is not so much. In contrast,
so long as conventional methods like RCWA are applied, intro-
ducing longitudinal inhomogeneity in the refractive index pro-
file of gratings calls for considerable extra computational load
compared to the run time of homogeneous structures. This can
be explained by considering how the extra time is imposed by
staircase approximation of the permittivity profile and the cor-
responding multilayer analysis of the inhomogeneous structure.
As already emphasized, the RCWA method is superior to the
proposed approach in the case of homogeneous grating. In this
particular example, RCWA can be stably employed to obtain the
reflectance within a much less computation time of 8.45 s for
m = 0. Yet, the run time of analyzing the inhomogeneous case,
i.e., m # 0, by applying RCWA method is at least expected to
be comparable with that of our proposed method.

Another example is a two-dimensional grating of finite thick-
ness. The permittivity of the proposed structure, shown in Fig. 8,
varies as

e(r,2) =2+ <0.1 +0.25in <6TTZ>> cos(Kgz).  (27)

Here, the incident angle (6”) is 45°, grating periodicity (A¢g) is
normalized to 1, and d = 1.713A¢. Reflectance and transmit-
tance are plotted in Fig. 9 versus normalized frequency K d,
where K denotes the free space wavenumber. The numerical
results are obtained by N = 5 and M = 15, where the whole
structure is analyzed by using the methodology introduced in
Section II-B. The spectral response of Fig. 9 obtained in 52.46
s for 0.0003 normalized frequency steps using a Pentium IV
2.4 GHz personal computer, shows the efficacy of the proposed
approach for analyzing such structures. This structure, with its
sharply selective reflection and transmission response, can find
applications in designing notch filters and multiplexers.
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Fig. 9. Reflectance and transmittance of the two-dimensional grating intro-
duced in Fig. 8, obtained by NV = 5 and M = 15.

V. CONCLUSION

In this paper, a polynomial expansion of electromagnetic
fields amplitudes for grating diffraction analysis has been re-
ported, and the formulation for the general case of planar slanted
gratings has been derived. Both TE and TM polarizations have
been addressed where any other incident polarizations can be
considered as a superposition of these two orthogonal polar-
izations. This new method is based on Legendre polynomial
expansion rather than the conventional modal analysis in which
space harmonic amplitudes of the fields are expanded in terms
of the eigenvectors of the coefficient matrix defined by rigorous
coupled wave equations. To verify the proposed method, the
results of our analysis have been compared with other results
previously reported. It is also shown that the proposed poly-
nomial expansion method yields reliable and stable results.
Convergence rate of the proposed method is studied and is
compared with that of RCWA, where the conventional rule
of thumb for choosing the total number of space harmonics
is criticized. Frequency selective structures and absorption
gratings are also investigated to demonstrate the applicability
of the proposed method. This method is particularly useful for
analysis of inhomogeneous gratings, where shift variant state
space equations do not have a general closed form solution.
Though such inhomogeneous gratings can be decomposed
into approximative gratings of homogeneous profiles, the total
structure can be wholly analyzed by solving the shift variant
equations using the proposed polynomial expansion approach.
Such an entire analysis of inhomogeneous structures can be
carried out within a reasonable time. This is the case in which
the proposed approach shows especial efficiency from different
aspects of computation burden, numerical stability, conver-
gence, and generality.
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